Friday, 22 December 2017

Arecibo Radar Returns with Asteroid Phaethon Images


After several months of downtime after Hurricane Maria blew through, the Arecibo Observatory Planetary Radar has returned to normal operation, providing the highest-resolution images to date of near-Earth asteroid 3200 Phaethon during its Dec. 16 flyby of Earth. The radar images, which are subtle at the available resolution, reveal the asteroid is spheroidal in shape and has a large concavity at least several hundred meters in extent near the leading edge, and a conspicuous dark, circular feature near one of the poles. Arecibo's radar images of Phaethon have resolutions as fine as about 250 feet (75 meters) per pixel.

"These new observations of Phaethon show it may be similar in shape to asteroid Bennu, the target of NASA's OSIRIS-REx spacecraft, but 10 times larger," said Patrick Taylor, a Universities Space Research Association (USRA), Columbia, Maryland, scientist and group leader for Planetary Radar at Arecibo Observatory. "The dark feature could be a crater or some other topographic depression that did not reflect the radar beam back at us."

Radar images obtained by Arecibo indicate Phaethon has a diameter of about 3.6 miles (6 kilometers) -- roughly 0.6 miles (1 kilometer) larger than previous estimates. Phaethon is the second largest near-Earth asteroid classified as "Potentially Hazardous." Near-Earth objects are classified as potentially hazardous asteroids (PHAs), based on their size and how closely their orbits approach Earth.

"Arecibo is an important global asset, crucial for planetary defense work because of its unique capabilities," said Joan Schmelz of USRA and deputy director of Arecibo Observatory. "We have been working diligently to get it back up and running since Hurricane Maria devastated Puerto Rico."

The Arecibo Observatory has the most powerful astronomical radar system on Earth. On Sept. 20, the telescope suffered minor structural damage when Maria, the strongest hurricane to hit the island since 1928, made landfall. Some days after the storm, the telescope resumed radio astronomy observations, while radar observations, which require high power and diesel fuel for generators at the site, resumed operations in early December after commercial power returned to the observatory.

Asteroid Phaethon was discovered on Oct. 11, 1983, by NASA's Infrared Astronomical Satellite (IRAS). Observations of Phaethon were conducted at Arecibo from Dec. 15 through 19, 2017, using the NASA-funded planetary radar system. At time of closest approach on Dec. 16 at 3 p.m. PST (3 p.m. EST, 11 p.m. UTC) the asteroid was about 1.1 million miles (1.8 million kilometers) away, or about 4.6 times the distance from Earth to the moon. The encounter is the closest the object will come to Earth until 2093.

Radar has been used to observe hundreds of asteroids. When these small, natural remnants of the formation of our solar system pass relatively close to Earth, deep space radar is a powerful technique for studying their sizes, shapes, rotation, surface features and roughness, and for more precise determination of their orbital path.

The Arecibo Planetary Radar Program is fully funded by NASA through a grant to Universities Space Research Association (USRA), from the Near-Earth Object Observations program. The Arecibo Observatory is a facility of the National Science Foundation operated under cooperative agreement by SRI International, USRA, and Universidad Metropolitana.

NASA's Planetary Defense Coordination Office is responsible for finding, tracking and characterizing potentially hazardous asteroids and comets coming near Earth, issuing warnings about possible impacts, and assisting coordination of U.S. government response planning, should there be an actual impact threat.

More information about the National Science Foundation's Arecibo Observatory can be found at:

http://www.naic.edu

More information about asteroids and near-Earth objects can be found at:

http://ift.tt/2oIYiE1

http://ift.tt/2v66e4Q

For more information about NASA's Planetary Defense Coordination Office, visit:

http://ift.tt/1PcV8xE

For asteroid and comet news and updates, follow AsteroidWatch on Twitter:

http://twitter.com/AsteroidWatch

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Dwayne Brown

NASA Headquarters, Washington

202-358-1726

dwayne.c.brown@nasa.gov

Suraiya Farukhi

Universities Space Research Association, Columbia, Maryland

sfarukhi@usra.edu

410-740-6224

2017-325



from News and Features http://ift.tt/2zf6GzP
via IFTTT

Wet Winters May Not Dampen Small Wildfires


NASA scientists conducting research on the connection between fuel moisture and fires have uncovered a paradox: a wet winter corresponds to more small wildfires in the following fire season, not fewer, as is commonly assumed. Large fires behave more "logically," with fewer large fires after a wet winter and more after a dry one.

"This is the most surprising result from our study, because we would expect small fires to follow suit with larger fires," said Daniel Jensen, a Ph.D. candidate at UCLA who worked on the project under the direction of scientist J.T. Reager of NASA's Jet Propulsion Laboratory in Pasadena, California. When there is ample moisture for plant growth, Jensen pointed out, "It seems that the buildup of fuel content alone causes there to be more fires -- but not necessarily more devastating fires."

The research is a step toward understanding the role of fuel moisture in wildfires, which could help in determining how severe a fire season may be several months before it arrives. A paper on the research is online in the journal Environmental Research Letters.

As anyone who has ever lit a campfire knows, dry fuel catches fire and burns faster than damp fuel. Knowing the moisture of a fuel supply can improve predictions of how fast a wildfire may spread, but measuring it from samples collected in the field is time-consuming and labor-intensive. Remote sensing offers a possible alternative, and earlier studies have shown that soil moisture (the water contained in the soil) correlates well with fuel moisture.

Jensen and co-authors correlated records of wildfire occurrences across the contiguous United States from 2003 through 2012 with soil moisture measurements from the U.S./German Gravity Recovery and Climate Experiment (GRACE) satellite mission and U.S. Geological Survey data on vegetation and landscape types. They found that although each landscape type varied in average soil moisture and average number of fires, in every landscape type, the number of small fires increased after a wet pre-season.

Jensen explained that a wet winter causes grasses and other small plants to grow profusely. These plants dry out and die at the end of the growing season, leaving abundant fuel for a wildfire. Trees and larger shrubs, however, retain more moisture after a wet winter. That might hamper the ability of small fires to grow into large ones in landscapes containing trees.

To obtain their results, the researchers developed techniques to assimilate GRACE data into a high-resolution U.S. hydrology model called the Catchment Land Surface Model, from NASA's Goddard Space Flight Center in Greenbelt, Maryland, for a product with both accuracy and high resolution. They parceled each GRACE estimate, which covers a region about 186 miles (300 kilometers) square, into dozens of smaller "boxes" to match the resolution of the model, using data assimilation techniques to refine the "fit" until the results added up correctly to match the GRACE data. Data assimilation, a technique commonly used with weather forecasting models, adds ongoing observational data throughout the course of a simulation to keep a model on track.

The scientists chose GRACE because of the mission's longevity, said Reager. Other missions such as NASA's Soil Moisture Active Passive (SMAP) satellite offer higher resolution, but none has been in orbit as long as GRACE. "Without that long record, we wouldn't have been able to do the model fitting," Reager said. "Now that we've built the model, we can plug in SMAP data. This methodology will help us get a better look at the ecosystem dynamics of fire activity."

For more on GRACE and GRACE-Follow-On, which is launching next spring to continue the GRACE measurement, see:

http://ift.tt/2uthPMc

http://ift.tt/2nAUHLb

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, California

818-354-0474

Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen

NASA's Earth Science News Team

2017-324



from News and Features http://ift.tt/2kUGcyt
via IFTTT

Thursday, 21 December 2017

NASA Chooses New Frontiers Mission Finalists


NASA has announced two finalist proposals under its New Frontiers program.

The CAESAR mission, led by Cornell University in Ithaca, New York, and managed by NASA's Goddard Space Flight Center in Greenbelt, Maryland, would attempt to return a sample from a comet successfully explored by the European Space Agency's Rosetta spacecraft. Dragonfly, led by the Johns Hopkins University Applied Physics Laboratory in Laurel, Maryland, would explore the prebiotic chemistry and habitability of dozens of sites on Saturn's moon Titan.

NASA's Jet Propulsion Laboratory in Pasadena, California, would provide navigation support for the Dragonfly mission. JPL also would provide instruments for two other proposals selected for technology development funds to prepare them for future mission competitions. One mission would explore Venus, the other would explore Saturn's moon Enceladus.

The selected mission will be the fourth in NASA's New Frontiers program. Previously funded proposals include the JPL-led Juno mission, which is currently orbiting Jupiter.

For more information, see NASA's news release on the announcement at:

http://ift.tt/2CMtxVz

News Media Contact

Dwayne Brown / Laurie Cantillo

Headquarters, Washington

202-358-1726 / 202-358-1077

dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

Molly Porter

Marshall Space Flight Center, Huntsville, Ala.

256-544-2771

molly.a.porter@nasa.gov

2017-323



from News and Features http://ift.tt/2oYUbsh
via IFTTT

Prototype Space Sensors Take Test Ride on NASA ER-2


Scientists recently completed test flights with prototypes of potential satellite sensors - including two from NASA's Jet Propulsion Laboratory in Pasadena, California -- over the Western United States, probing basic science questions about aerosols, clouds, air quality and global ocean ecosystems.

The flight campaign, called Aerosol Characterization from Polarimeter and Lidar (ACEPOL), sought to test capabilities of several proposed instruments for the Aerosol-Cloud-Ecosystem (ACE) pre-formulation study.

Aerosols are small solid or liquid particles suspended in Earth's atmosphere, like fine dust, smoke, pollen or soot. These particles scatter and absorb sunlight and are critical to the formation of clouds and precipitation. Scientists can analyze this scattered light using instruments like polarimeters, which measure the color and polarization of the scattered light, and lidars, which use lasers to probe the atmosphere. Together these data sets provide key information about aerosol properties, including size, shape and chemical composition -- information that provides a better understanding and assessment of their effects on weather, climate and air quality.

Prior to being launched into space, airborne versions of satellite sensors typically take a test ride on NASA's ER-2 high-altitude aircraft. The platform, based at NASA's Armstrong Flight Research Center in Palmdale, California, flies at altitudes of up to 70,000 feet (21,336 meters), and provides a vantage point and conditions similar to space. By flying these instruments on an aircraft before the expense of launching them into space, scientists and engineers can make adjustments to the hardware and data retrieval algorithms.

The ER-2 also enables scientists to observe specific events of interest, like wildfires or volcanic eruptions, to gain a more comprehensive collection of different types of aerosols in different conditions. The aircraft test phase in sensor development is helpful for ensuring instruments are collecting both accurate and useful data prior to the time the final version of the sensors makes its trip into space.

In addition to testing capabilities of new sensors, ACEPOL flights also provided calibration and evaluation data for NASA's Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite lidar by staging satellite underpasses as part of their flight plans. In addition to comparisons with CALIPSO, ACEPOL also contributes to the development of future satellite missions, including the European Space Agency's EarthCare, the European Organization for the Exploitation of Meteorological Satellites' Meteorological Operational Satellite - Second Generation (METOP-SG), and NASA's Multi-Angle Imager for Aerosols (MAIA) and Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) programs. MAIA is being built and is managed by JPL.

The team completed nine flights that wrapped up in mid-November, observing targets such as California's Central Valley and the Pacific Ocean, and as far east as Arizona, where the team observed smoke from controlled forest fires near Flagstaff.

The ER-2's payload included four airborne polarimeters -- Airborne Hyper-Angular Rainbow Polarimeter (AirHARP), JPL's Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI), Airborne Spectropolarimeter for Planetary Exploration (AirSPEX) and Research Scanning Polarimeter (RSP) -- and two lidar instruments - Cloud Physics Lidar (CPL) and High Spectral Resolution Lidar-2 (HSRL-2). Each of the polarimeters used different techniques and angles to measure and record data. The instruments also differed from one another in size and power. From an engineering perspective, the ultimate goal of the ACEPOL mission was to better understand how those overall differences translate into data collection.

The combination of the polarimeter and lidar instruments, along with ground-based data from stationary air quality measurement stations, provide scientists with a more complete picture of the three-dimensional distribution of aerosols in Earth's atmosphere. Using a variety of different approaches for collecting data also enables scientists to differentiate between various types of aerosols (e.g., smoke, dust, pollution) and clouds (cirrus, stratus, etc.).

The ACEPOL mission involved partnership between multiple NASA centers, including Langley Research Center in Hampton, Virginia; Goddard Space Flight Center in Greenbelt, Maryland; the Goddard Institute for Space Studies in New York City; and JPL. The mission also included international partnership with the Netherlands Institute for Space Research, which flew the AirSPEX instrument on board the ER-2 for the second time. The instrument made its maiden flight on the ER-2 in January 2016.

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, California

818-354-0474

Alan.Buis@jpl.nasa.gov

Kate Squires

NASA Armstrong Flight Research Center, Edwards, California

661-276-2020

Kate.k.Squires@nasa.gov

2017-322



from News and Features http://ift.tt/2BHm1Mm
via IFTTT

Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star


Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope.

The newly-discovered Kepler-90i - a sizzling hot, rocky planet that orbits its star once every 14.4 days - was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers "learn." In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets.

Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA's Kepler Space Telescope.

NASA will host a Reddit Ask Me Anything at noon PST (3 p.m. EST) today on this discovery.

"Just as we expected, there are exciting discoveries lurking in our archived Kepler data, waiting for the right tool or technology to unearth them," said Paul Hertz, director of NASA's Astrophysics Division in Washington. "This finding shows that our data will be a treasure trove available to innovative researchers for years to come."

The discovery came about after researchers Christopher Shallue and Andrew Vanderburg trained a computer to learn how to identify exoplanets in the light readings recorded by Kepler - the miniscule change in brightness captured when a planet passed in front of, or transited, a star. Inspired by the way neurons connect in the human brain, this artificial "neural network" sifted through Kepler data and found weak transit signals from a previously-missed eighth planet orbiting Kepler-90, in the constellation Draco.

Machine learning has previously been used in searches of the Kepler database, and this continuing research demonstrates that neural networks are a promising tool in finding some of the weakest signals of distant worlds.

Other planetary systems probably hold more promise for life than Kepler-90. About 30 percent larger than Earth, Kepler-90i is so close to its star that its average surface temperature is believed to exceed 800 degrees Fahrenheit, on par with Mercury. Its outermost planet, Kepler-90h, orbits at a similar distance to its star as Earth does to the Sun.

"The Kepler-90 star system is like a mini version of our solar system. You have small planets inside and big planets outside, but everything is scrunched in much closer," said Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin.

Shallue, a senior software engineer with Google's research team Google AI, came up with the idea to apply a neural network to Kepler data. He became interested in exoplanet discovery after learning that astronomy, like other branches of science, is rapidly being inundated with data as the technology for data collection from space advances.

"In my spare time, I started Googling for 'finding exoplanets with large data sets' and found out about the Kepler mission and the huge data set available," said Shallue. "Machine learning really shines in situations where there is so much data that humans can't search it for themselves."

Kepler's four-year dataset consists of 35,000 possible planetary signals. Automated tests, and sometimes human eyes, are used to verify the most promising signals in the data. However, the weakest signals often are missed using these methods. Shallue and Vanderburg thought there could be more interesting exoplanet discoveries faintly lurking in the data.

First, they trained the neural network to identify transiting exoplanets using a set of 15,000 previously vetted signals from the Kepler exoplanet catalogue. In the test set, the neural network correctly identified true planets and false positives 96 percent of the time. Then, with the neural network having "learned" to detect the pattern of a transiting exoplanet, the researchers directed their model to search for weaker signals in 670 star systems that already had multiple known planets. Their assumption was that multiple-planet systems would be the best places to look for more exoplanets.

"We got lots of false positives of planets, but also potentially more real planets," said Vanderburg. "It's like sifting through rocks to find jewels. If you have a finer sieve then you will catch more rocks but you might catch more jewels, as well."

Kepler-90i wasn't the only jewel this neural network sifted out. In the Kepler-80 system, they found a sixth planet. This one, the Earth-sized Kepler-80g, and four of its neighboring planets form what is called a resonant chain - where planets are locked by their mutual gravity in a rhythmic orbital dance. The result is an extremely stable system, similar to the seven planets in the TRAPPIST-1 system.

Their research paper reporting these findings has been accepted for publication in The Astronomical Journal. Shallue and Vanderburg plan to apply their neural network to Kepler's full set of more than 150,000 stars.

Kepler has produced an unprecedented data set for exoplanet hunting. After gazing at one patch of space for four years, the spacecraft now is operating on an extended mission and switches its field of view every 80 days.

"These results demonstrate the enduring value of Kepler's mission," said Jessie Dotson, Kepler's project scientist at NASA's Ames Research Center in California's Silicon Valley. "New ways of looking at the data - such as this early-stage research to apply machine learning algorithms - promise to continue to yield significant advances in our understanding of planetary systems around other stars. I'm sure there are more firsts in the data waiting for people to find them."

Ames manages the Kepler and K2 missions for NASA's Science Mission Directorate in Washington. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. This work was performed through the Carl Sagan Postdoctoral Fellowship Program executed by the NASA Exoplanet Science Institute.

For more information on this announcement, visit:

http://ift.tt/2o4qYMp

For more information about the Kepler mission, visit:

http://ift.tt/2sHzem6

News Media Contact

Felicia Chou

NASA Headquarters, Washington

202-358-0257

felicia.chou@nasa.gov

Alison Hawkes

Ames Research Center, California's Silicon Valley

650-604-0281

alison.j.hawkesbak@nasa.gov

Elizabeth Landau

Jet Propulsion Laboratory, Pasadena, California

818-354-6425

elizabeth.r.landau@jpl.nasa.gov

2017-321



from News and Features http://ift.tt/2CObQVP
via IFTTT

NASA Invests in Concept Development for Missions to Comet, Saturn Moon Titan

NASA has selected two finalist concepts for a robotic mission planned to launch in the mid-2020s: a comet sample return mission and a drone-like rotorcraft that would explore potential landing sites on Saturn’s largest moon, Titan.

from NASA Breaking News http://ift.tt/2z6s8Ho
via IFTTT

Tuesday, 19 December 2017

NASA to Name Finalists for Future Solar System Mission

NASA will announce finalist concepts for a future robotic mission to explore the solar system during a media teleconference at 2 p.m. EST Wednesday, Dec. 20.

from NASA Breaking News http://ift.tt/2BFMn3U
via IFTTT

NASA Awards Contract for Aircraft Operations Support

NASA has awarded the Aircraft Maintenance, Logistics, Integration, Configuration Management and Engineering (ALICE) contract to Yulista Tactical Services, LLC in Huntsville, Alabama.

from NASA Breaking News http://ift.tt/2BbV1I8
via IFTTT

Monday, 18 December 2017

Nominations Process Opens for National Space Council Users’ Advisory Group

Public nominations now are being accepted from U.S. citizens and organizations for potential membership on an advisory group that will represent the perspectives, interests and expertise of industry and other non-federal entities to the National Space Council.

from NASA Breaking News http://ift.tt/2kIBTGx
via IFTTT

Sunday, 17 December 2017

Three New Crew Members on Voyage to International Space Station

Three crew members representing the United States, Russia and Japan are on their way to the International Space Station after launching from the Baikonur Cosmodrome in Kazakhstan at 2:21 a.m. EST Sunday (1:21 p.m. Baikonur time).

from NASA Breaking News http://ift.tt/2j9v3to
via IFTTT

Friday, 15 December 2017

NASA Sends New Research to Space Station Aboard SpaceX Resupply Mission

An experiment in space manufacturing and an enhanced study of solar energy are among the research currently heading to the International Space Station following Friday’s launch of a SpaceX Dragon spacecraft at 10:36 a.m. EST.

from NASA Breaking News http://ift.tt/2zfpIcG
via IFTTT

Thursday, 14 December 2017

Artificial Intelligence, NASA Data Used to Discover Eighth Planet Circling Distant Star

Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA’s Kepler Space Telescope.

from NASA Breaking News http://ift.tt/2B2kaS7
via IFTTT

NASA Astronaut Bresnik and Crewmates Return to Earth From Space Station

Three crew members who have been living and working aboard the International Space Station returned to Earth on Thursday, landing in Kazakhstan after opening a new chapter in the scientific capability of humanity’s premier microgravity laboratory.

from NASA Breaking News http://ift.tt/2C7vWd4
via IFTTT

Next-Generation GRACE Satellites Arrive at Launch Site


A pair of advanced U.S./German Earth research satellites with some very big shoes to fill is now at California's Vandenberg Air Force Base to begin final preparations for launch next spring.

Following a year-long test campaign by satellite manufacturer Airbus Defence and Space at IABG in Ottobrunn, near Munich, Germany, the twin Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) satellites were loaded aboard an air freighter at Munich airport Dec. 11 and arrived at the launch site on California's central coast Tuesday, Dec. 12. GRACE-FO will provide continuity to the Earth climate data record of the extremely successful predecessor GRACE, which completed its science mission in October after more than 15 years in orbit.

GRACE-FO will extend GRACE's legacy of scientific achievements, which range from tracking mass changes of Earth's polar ice sheets and estimating global groundwater changes, to measuring the mass changes of large earthquakes and inferring changes in deep ocean currents, a driving force in climate. To date, GRACE observations have been used in more than 4,300 research publications. Its measurements provide a unique view of the Earth system and have far-reaching benefits to society, such as providing insights into where global groundwater resources may be shrinking or growing and where dry soils are contributing to drought. GRACE-FO is planned to fly at least five years.

The GRACE-FO spacecraft will undergo final tests before being integrated atop a SpaceX Falcon 9 rocket, where they will share a ride to space with five Iridium NEXT communications satellites.

"With this milestone, we are now in position to launch GRACE Follow-On and restart the valuable observations and science that ceased in mid-2017 with the end of the GRACE science mission," said Michael Watkins, director of NASA's Jet Propulsion Laboratory in Pasadena, California, and GRACE Follow-On science team lead.

After a few months of in-orbit checkout, GRACE-FO will track changes in the distribution of liquid water, ice and land masses by measuring changes in Earth's gravity field every 30 days. GRACE-FO will essentially measure how much mass is gained or lost each month on the continents, in the oceans, and in the ice sheets. These data will improve scientific understanding of Earth system processes and the accuracy of environmental monitoring and forecasts.

The continuous movement of masses of water, ice, air and the solid Earth that GRACE-FO will track is driven by Earth system processes such as:

  • Terrestrial water cycle processes, such as precipitation, droughts, floods, changes in ice sheets and land glaciers, evaporation from the oceans, and groundwater use and storage.
  • Tectonic processes, such as earthquakes and variations in Earth's lithosphere (the rigid outer layer of our planet that includes the crust and upper mantle) and mantle density.

The GRACE-FO satellites will be launched into a polar orbit at an altitude of about 311 miles (500 kilometers). Flying 137 miles (220 kilometers) apart, the satellites will use a JPL-built microwave ranging system to take continuous, very precise measurements of the variations in the distance between each other. These variations are caused by minute changes in the gravitational pull on the satellites from local changes in Earth's mass below them. The microwave ranging data are combined with GPS tracking for timing, star trackers for attitude information, and an accelerometer built at ONERA in France to account for non-gravitational effects, such as atmospheric drag and solar radiation. From these data, scientists will calculate how mass is redistributed each month and monitor its changes over time.

Each satellite will also carry an instrument called an atmospheric limb sounder that will provide an innovative and cost-effective technique to measure how much signals from GPS satellites are distorted by the atmosphere. The sounders will provide up to 200 profiles of atmospheric temperature and water vapor content each day to aid weather forecasting.

While similar to their predecessor GRACE satellites, GRACE-FO incorporates design upgrades gleaned from 15 years of GRACE operations that will improve satellite performance, reliability and mission operations. GRACE-FO will also fly a new, more precise inter-satellite laser ranging instrument, developed by a German/American joint venture, which will be tested for use in future generations of GRACE-like missions.

GRACE-FO is a partnership between JPL and the German Research Centre for Geosciences (GFZ) in Potsdam, with participation by Deutsches Zentrum für Luft- und Raumfahrt (DLR), the German Aerospace Center.

For more information on GRACE-FO, visit:

http://ift.tt/2nAUHLb

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, California

818-354-0474

Alan.Buis@jpl.nasa.gov

2017-320



from News and Features http://ift.tt/2AkvOGZ
via IFTTT

NASA Television Updates Broadcast Schedule for Cargo Resupply Mission

NASA commercial cargo provider SpaceX now is targeting no earlier than 10:36 a.m. EST Friday, Dec. 15, for its 13th commercial resupply services mission to the International Space Station.

from NASA Breaking News http://ift.tt/2C1OZFQ
via IFTTT

Wednesday, 13 December 2017

Mars Mission Sheds Light on Habitability of Distant Planets


How long might a rocky, Mars-like planet be habitable if it were orbiting a red dwarf star? It's a complex question but one that NASA's Mars Atmosphere and Volatile Evolution mission can help answer.

"The MAVEN mission tells us that Mars lost substantial amounts of its atmosphere over time, changing the planet's habitability," said David Brain, a MAVEN co-investigator and a professor at the Laboratory for Atmospheric and Space Physics at the University of Colorado Boulder. "We can use Mars, a planet that we know a lot about, as a laboratory for studying rocky planets outside our solar system, which we don't know much about yet."

At the fall meeting of the American Geophysical Union on Dec. 13, 2017, in New Orleans, Louisiana, Brain described how insights from the MAVEN mission could be applied to the habitability of rocky planets orbiting other stars.

MAVEN carries a suite of instruments that have been measuring Mars' atmospheric loss since November 2014. The studies indicate that Mars has lost the majority of its atmosphere to space over time through a combination of chemical and physical processes. The spacecraft's instruments were chosen to determine how much each process contributes to the total escape.

In the past three years, the Sun has gone through periods of higher and lower solar activity, and Mars also has experienced solar storms, solar flares and coronal mass ejections. These varying conditions have given MAVEN the opportunity to observe Mars' atmospheric escape getting cranked up and dialed down.

Brain and his colleagues started to think about applying these insights to a hypothetical Mars-like planet in orbit around some type of M-star, or red dwarf, the most common class of stars in our galaxy.

The researchers did some preliminary calculations based on the MAVEN data. As with Mars, they assumed that this planet might be positioned at the edge of the habitable zone of its star. But because a red dwarf is dimmer overall than our Sun, a planet in the habitable zone would have to orbit much closer to its star than Mercury is to the Sun.

The brightness of a red dwarf at extreme ultraviolet (UV) wavelengths combined with the close orbit would mean that the hypothetical planet would get hit with about 5 to 10 times more UV radiation than the real Mars does. That cranks up the amount of energy available to fuel the processes responsible for atmospheric escape. Based on what MAVEN has learned, Brain and colleagues estimated how the individual escape processes would respond to having the UV cranked up.

Their calculations indicate that the planet's atmosphere could lose 3 to 5 times as many charged particles, a process called ion escape. About 5 to 10 times more neutral particles could be lost through a process called photochemical escape, which happens when UV radiation breaks apart molecules in the upper atmosphere.

Because more charged particles would be created, there also would be more sputtering, another form of atmospheric loss. Sputtering happens when energetic particles are accelerated into the atmosphere and knock molecules around, kicking some of them out into space and sending others crashing into their neighbors, the way a cue ball does in a game of pool.

Finally, the hypothetical planet might experience about the same amount of thermal escape, also called Jeans escape. Thermal escape occurs only for lighter molecules, such as hydrogen. Mars loses its hydrogen by thermal escape at the top of the atmosphere. On the exo-Mars, thermal escape would increase only if the increase in UV radiation were to push more hydrogen to the top of the atmosphere.

Altogether, the estimates suggest that orbiting at the edge of the habitable zone of a quiet M-class star, instead of our Sun, could shorten the habitable period for the planet by a factor of about 5 to 20. For an M-star whose activity is amped up like that of a Tasmanian devil, the habitable period could be cut by a factor of about 1,000 -- reducing it to a mere blink of an eye in geological terms. The solar storms alone could zap the planet with radiation bursts thousands of times more intense than the normal activity from our Sun.

However, Brain and his colleagues have considered a particularly challenging situation for habitability by placing Mars around an M-class star. A different planet might have some mitigating factors -- for example, active geological processes that replenish the atmosphere to a degree, a magnetic field to shield the atmosphere from stripping by the stellar wind, or a larger size that gives more gravity to hold on to the atmosphere.

"Habitability is one of the biggest topics in astronomy, and these estimates demonstrate one way to leverage what we know about Mars and the Sun to help determine the factors that control whether planets in other systems might be suitable for life," said Bruce Jakosky, MAVEN's principal investigator at the University of Colorado Boulder.

MAVEN's principal investigator is based at the University of Colorado's Laboratory for Atmospheric and Space Physics, Boulder. The university provided two science instruments and leads science operations, as well as education and public outreach, for the mission. NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the MAVEN project and provided two science instruments for the mission. NASA's Jet Propulsion Laboratory, a division of Caltech in Pasadena, California, manages the Mars Exploration Program for NASA's Science Mission Directorate, Washington.

For more information about MAVEN, visit:

http://ift.tt/2yndOJY

News Media Contact

Laurie Cantillo / Dwayne Brown

NASA Headquarters, Washington

202-358-1077 / 202-358-1726

laura.l.cantillo@nasa.gov / dwayne.c.brown@nasa.gov

Written by Elizabeth Zubritsky

NASA's Goddard Space Flight Center, Greenbelt, Md.

2017-319



from News and Features http://ift.tt/2AB4dFw
via IFTTT

Sierras Lost Water Weight, Grew Taller During Drought


Loss of water from the rocks of California's Sierra Nevada caused the mountain range to rise nearly an inch (24 millimeters) in height during the drought years from October 2011 to October 2015, a new NASA study finds. In the two following years of more abundant snow and rainfall, the mountains have regained about half as much water in the rock as they had lost in the preceding drought and have fallen about half an inch (12 millimeters) in height.

"This suggests that the solid Earth has a greater capacity to store water than previously thought," said research scientist Donald Argus of NASA's Jet Propulsion Laboratory in Pasadena, California, who led the study. Significantly more water was lost from cracks and soil within fractured mountain rock during drought and gained during heavy precipitation than hydrology models show.

Argus is giving a talk on the new finding today at the American Geophysical Union's fall conference in New Orleans.

The research team used advanced data-processing techniques on data from 1,300 GPS stations in the mountains of California, Oregon and Washington, collected from 2006 through October 2017. These research-quality GPS receivers were installed as part of the National Science Foundation's Plate Boundary Observatory to measure subtle tectonic motion in the region's active faults and volcanoes. They can monitor elevation changes within less than a tenth of an inch (a few millimeters).

The team found that the amount of water lost from within fractured mountain rock in 2011-2015 amounted to 10.8 cubic miles of water. This water is too inaccessible to be used for human purposes, but for comparison, the amount is 45 times as much water as Los Angeles currently uses in a year.

JPL water scientist Jay Famiglietti, who collaborated on the research, said the finding solves a mystery for hydrologists. "One of the major unknowns in mountain hydrology is what happens below the soil. How much snowmelt percolates through fractured rock straight downward into the core of the mountain? This is one of the key topics that we addressed in our study."

Earth's surface falls locally when it is weighed down with water and rebounds when the weight disappears. Many other factors also change the ground level, such as the movement of tectonic plates, volcanic activity, high- and low-pressure weather systems, and Earth's slow rebound from the last ice age. The team corrected for these and other factors to estimate how much of the height increase was solely due to water loss from rock.

Before this study, scientists' leading theories for the growth of the Sierra were tectonic uplift or Earth rebounding from extensive groundwater pumping in the adjoining California Central Valley. Argus calculated that these two processes together only produced a quarter of an inch (7 millimeters) of growth -- less than a third of the total.

Famiglietti said the techniques developed for this study will allow scientists to begin exploring other questions about mountain groundwater. "What does the water table look like within mountain ranges? Is there a significant amount of groundwater stored within mountains? We just don't have answers yet, and this study identities a set of new tools to help us get them."

A paper on the research, titled "Sustained water loss in California's mountain ranges during severe drought from 2012 through 2015 inferred from GPS," was published in the Journal of Geophysical Research: Solid Earth.

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, California

818-354-0474

Alan.Buis@jpl.nasa.gov

Written by Carol Rasmussen

NASA's Earth Science News Team

2017-318



from News and Features http://ift.tt/2CcIKQe
via IFTTT

Bright Areas on Ceres Suggest Geologic Activity


If you could fly aboard NASA's Dawn spacecraft, the surface of dwarf planet Ceres would generally look quite dark, but with notable exceptions. These exceptions are the hundreds of bright areas that stand out in images Dawn has returned. Now, scientists have a better sense of how these reflective areas formed and changed over time -- processes indicative of an active, evolving world.

"The mysterious bright spots on Ceres, which have captivated both the Dawn science team and the public, reveal evidence of Ceres' past subsurface ocean, and indicate that, far from being a dead world, Ceres is surprisingly active. Geological processes created these bright areas and may still be changing the face of Ceres today," said Carol Raymond, deputy principal investigator of the Dawn mission, based at NASA's Jet Propulsion Laboratory in Pasadena, California. Raymond and colleagues presented the latest results about the bright areas at the American Geophysical Union meeting in New Orleans on Tuesday, Dec. 12.

Different Kinds of Bright Areas

Since Dawn arrived in orbit at Ceres in March 2015, scientists have located more than 300 bright areas on Ceres. A new study in the journal Icarus, led by Nathan Stein, a doctoral researcher at Caltech in Pasadena, California, divides Ceres' features into four categories.

The first group of bright spots contains the most reflective material on Ceres, which is found on crater floors. The most iconic examples are in Occator Crater, which hosts two prominent bright areas. Cerealia Facula, in the center of the crater, consists of bright material covering a 6-mile-wide (10-kilometer-wide) pit, within which sits a small dome. East of the center is a collection of slightly less reflective and more diffuse features called Vinalia Faculae. All the bright material in Occator Crater is made of salt-rich material, which was likely once mixed in water. Although Cerealia Facula is the brightest area on all of Ceres, it would resemble dirty snow to the human eye.

More commonly, in the second category, bright material is found on the rims of craters, streaking down toward the floors. Impacting bodies likely exposed bright material that was already in the subsurface or had formed in a previous impact event.

Separately, in the third category, bright material can be found in the material ejected when craters were formed.

The mountain Ahuna Mons gets its own fourth category -- the one instance on Ceres where bright material is unaffiliated with any impact crater. This likely cryovolcano, a volcano formed bythe gradual accumulation of thick, slowly flowing icy materials, has prominent bright streaks on its flanks.

Over hundreds of millions of years, bright material has mixed with the dark material that forms the bulk of Ceres' surface, as well as debris ejected during impacts. That means billions of years ago, when Ceres experienced more impacts, the dwarf planet's surface likely would have been peppered with thousands of bright areas.

"Previous research has shown that the bright material is made of salts, and we think subsurface fluid activity transported it to the surface to form some of the bright spots," Stein said.

The Case of Occator

Why do the different bright areas of Occator seem so distinct from one another? Lynnae Quick, a planetary geologist at the Smithsonian Institution in Washington, has been delving into this question.

The leading explanation for what happened at Occator is that it could have had, at least in the recent past, a reservoir of salty water beneath it. Vinalia Faculae, the diffuse bright regions to the northeast of the crater's central dome, could have formed from a fluid driven to the surface by a small amount of gas, similar to champagne surging out of its bottle when the cork is removed.

In the case of the Vinalia Faculae, the dissolved gas could have been a volatile substance such as water vapor, carbon dioxide, methane or ammonia. Volatile-rich salty water could have been brought close to Ceres' surface through fractures that connected to the briny reservoir beneath Occator. The lower pressure at Ceres' surface would have caused the fluid to boil off as a vapor. Where fractures reached the surface, this vapor could escape energetically, carrying with it ice and salt particles and depositing them on the surface.

Cerealia Facula must have formed in a somewhat different process, given that it is more elevated and brighter than Vinalia Faculae. The material at Cerealia may have been more like an icy lava, seeping up through the fractures and swelling into a dome. Intermittent phases of boiling, similar to what happened when Vinalia Faculae formed, may have occurred during this process, littering the surface with ice and salt particles that formed the Cerealia bright spot.

Quick's analyses do not depend on the initial impact that formed Occator. However, the current thinking among Dawn scientists is that when a large body slammed into Ceres, excavating the 57-mile-wide (92-kilometer-wide) crater, the impact may have also created fractures through which liquid later emerged.

"We also see fractures on other solar system bodies, such as Jupiter's icy moon Europa," Quick said. "The fractures on Europa are more widespread than the fractures we see at Occator. However, processes related to liquid reservoirs that might exist beneath Europa's cracks today could be used as a comparison for what may have happened at Occator in the past."

As Dawn continues the final phase of its mission, in which it will descend to lower altitudes than ever before, scientists will continue learning about the origins of the bright material on Ceres and what gave rise to the enigmatic features in Occator.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. UCLA is responsible for overall Dawn mission science. Orbital ATK Inc., in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team. For a complete list of mission participants, visit:

http://ift.tt/2oWML7n

More information about Dawn is available at the following sites:

http://ift.tt/2oQqFkU

http://ift.tt/2oWMIsp

News Media Contact

Elizabeth Landau

Jet Propulsion Laboratory, Pasadena, Calif.

(818) 354-6425

Elizabeth.Landau@jpl.nasa.gov

2017-317



from News and Features http://ift.tt/2AcZXYv
via IFTTT

NASA Awards Contract for Safety, Mission Assurance Support

NASA has awarded the Safety and Mission Assurance Support Services III (SMASS III) contract to A-P-T Research, Inc. of Huntsville, Alabama, for a broad range of services at the agency’s Headquarters in Washington, Kennedy Space Center in Florida, and various sites supported by Kennedy’s programs and projects.

from NASA Breaking News http://ift.tt/2BXbU5a
via IFTTT

Tuesday, 12 December 2017

NASA Establishes Advisory Group for National Space Council

NASA has established a new advisory group on behalf of the National Space Council that will represent the expertise, interests and perspectives of non-federal aerospace organizations to the National Space Council.

from NASA Breaking News http://ift.tt/2BX2tCN
via IFTTT

Washington Students to Speak with NASA Astronaut on Space Station Today

Students from nine school districts in Port Orchard, Washington, will speak with a NASA astronaut living, working and doing research aboard the International Space Station at 1:10 p.m. EST today.

from NASA Breaking News http://ift.tt/2z3KnAj
via IFTTT

New Space Policy Directive Calls for Human Expansion Across Solar System

President Donald Trump is sending astronauts back to the Moon.

from NASA Breaking News http://ift.tt/2yg7tjE
via IFTTT

NASA's Juno Probes the Depths of Jupiter's Great Red Spot


Data collected by NASA's Juno spacecraft during its first pass over Jupiter's Great Red Spot in July 2017 indicate that this iconic feature penetrates well below the clouds. Other revelations from the mission include that Jupiter has two previously uncharted radiation zones. The findings were announced Monday at the annual American Geophysical Union meeting in New Orleans.

"One of the most basic questions about Jupiter's Great Red Spot is: how deep are the roots?" said Scott Bolton, Juno's principal investigator from the Southwest Research Institute in San Antonio. "Juno data indicate that the solar system's most famous storm is almost one-and-a-half Earths wide, and has roots that penetrate about 200 miles (300 kilometers) into the planet's atmosphere."

This animation takes the viewer on a simulated flight into, and then out of, Jupiter's upper atmosphere at the location of the Great Red Spot. It was created by combining an image from the JunoCam imager on NASA's Juno spacecraft with a computer-generated animation.

The science instrument responsible for this in-depth revelation was Juno's Microwave Radiometer (MWR). "Juno's Microwave Radiometer has the unique capability to peer deep below Jupiter's clouds," said Michael Janssen, Juno co-investigator from NASA's Jet Propulsion Laboratory in Pasadena, California. "It is proving to be an excellent instrument to help us get to the bottom of what makes the Great Red Spot so great."

Jupiter's Great Red Spot is a giant oval of crimson-colored clouds in Jupiter's southern hemisphere that race counterclockwise around the oval's perimeter with wind speeds greater than any storm on Earth. Measuring 10,000 miles (16,000 kilometers) in width as of April 3, 2017, the Great Red Spot is 1.3 times as wide as Earth.

"Juno found that the Great Red Spot's roots go 50 to 100 times deeper than Earth's oceans and are warmer at the base than they are at the top," said Andy Ingersoll, professor of planetary science at Caltech and a Juno co-investigator. "Winds are associated with differences in temperature, and the warmth of the spot's base explains the ferocious winds we see at the top of the atmosphere."

The future of the Great Red Spot is still very much up for debate. While the storm has been monitored since 1830, it has possibly existed for more than 350 years. In the 19th century, the Great Red Spot was well over two Earths wide. But in modern times, the Great Red Spot appears to be diminishing in size, as measured by Earth-based telescopes and spacecraft. At the time NASA's Voyagers 1 and 2 sped by Jupiter on their way to Saturn and beyond, in 1979, the Great Red Spot was twice Earth's diameter. Today, measurements by Earth-based telescopes indicate the oval that Juno flew over has diminished in width by one-third and height by one-eighth since Voyager times.

Juno also has detected a new radiation zone, just above the gas giant's atmosphere, near the equator. The zone includes energetic hydrogen, oxygen and sulfur ions moving at almost light speed.

"The closer you get to Jupiter, the weirder it gets," said Heidi Becker, Juno's radiation monitoring investigation lead at JPL. "We knew the radiation would probably surprise us, but we didn't think we'd find a new radiation zone that close to the planet. We only found it because Juno's unique orbit around Jupiter allows it to get really close to the cloud tops during science collection flybys, and we literally flew through it."

The new zone was identified by the Jupiter Energetic Particle Detector Instrument (JEDI) investigation. The particles are believed to be derived from energetic neutral atoms (fast-moving ions with no electric charge) created in the gas around the Jupiter moons Io and Europa. The neutral atoms then become ions as their electrons are stripped away by interaction with the upper atmosphere of Jupiter.

Juno also found signatures of a high-energy heavy ion population within the inner edges of Jupiter's relativistic electron radiation belt -- a region dominated by electrons moving close to the speed of light. The signatures are observed during Juno's high-latitude encounters with the electron belt, in regions never explored by prior spacecraft. The origin and exact species of these particles is not yet understood. Juno's Stellar Reference Unit (SRU-1) star camera detects the signatures of this population as extremely high noise signatures in images collected by the mission's radiation monitoring investigation.

To date, Juno has completed eight science passes over Jupiter. Juno's ninth science pass will be on Dec. 16.

Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida, and arrived in orbit around Jupiter on July 4, 2016. During its mission of exploration, Juno soars low over the planet's cloud tops -- as close as about 2,100 miles (3,400 kilometers). During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet's origins, structure, atmosphere and magnetosphere.

JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Lockheed Martin Space Systems, Denver, built the spacecraft. JPL is a division of Caltech in Pasadena, California.

More information on the Juno mission is available at:

http://ift.tt/2tjqyTj

http://ift.tt/1IMLBRt

The public can follow the mission on Facebook and Twitter at:

http://ift.tt/28MEQ53

http://www.twitter.com/NASAJuno

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Dwayne Brown / Laurie Cantillo

NASA Headquarters, Washington

202-358-1726 / 202-358-1077

dwayne.c.brown@nasa.gov / laura.l.cantillo@nasa.gov

2017-316



from News and Features http://ift.tt/2jNgVGY
via IFTTT

NASA Provides Coverage of Today’s Space Policy Directive Signing

NASA Television and the agency’s website will provide live coverage of the Space Policy Directive – 1 signing ceremony at the White House at 3 p.m. EST today.

from NASA Breaking News http://ift.tt/2B4n8Yh
via IFTTT

Saturday, 9 December 2017

The Moon Shines Brightly Among NASA’s 2017 Highlights

The Moon became a key focus point for NASA in 2017, whether it was blocking out the Sun during one of the most-viewed events in U.S. history, or reinvigorating the agency’s human space exploration plans.

from NASA Breaking News http://ift.tt/2nETuUq
via IFTTT

NASA Airborne Science Team Surveys California Fires


A team of NASA scientists is using a high-altitude aircraft and a sophisticated imaging spectrometer built by NASA's Jet Propulsion Laboratory in Pasadena, California, to study environmental impacts caused by the devastating Southern California wildfires. NASA's ER-2, based at Armstrong Flight Research Center in Palmdale, California, flies as high as 70,000 feet (21,300 meters), almost twice as high as a commercial airliner.

NASA uses the unique perspective of the ER-2 for science research missions over much of the world. This month, the aircraft has been flying locally over California, testing early versions of science instruments that may one day be launched into space aboard a satellite to observe our home planet Earth.

During these engineering test flights, the aircraft carried several science instruments aboard. One of them - a JPL spectrometer called AVIRIS - was in the right place at the right time when fires broke out in Los Angeles and Ventura Counties on Tuesday, December 4.

AVIRIS (Airborne Visible/Infrared Imaging Spectrometer), is a modern instrument with an extensive heritage that can peer through smoke and dust to see information about the ground surface below. This includes observations of trees and other foliage that end up being fuel for wildfires.

During a fire, the instrument can see aerosols, or particle matter, produced from the smoke, as well as the combustion process as fuel burns, and can accurately measure fire temperatures.

AVIRIS can also observe fine details of vegetation, such as the water content in leaves and what types of species of plants are growing prior to a fire burning in a region. Scientists can use the instrument to fly over regions before a fire to get a base measurement of a certain area, fly over the same area again after a fire, and then compare the before-and-after images to determine the fire's severity.

"The vision is that these types of measurements could be available from space in the next decade. The resulting information would then be used to develop fuel maps in advance that could be used to make better predictions about where you could mitigate risk by clearing brush and trees," said JPL's Rob Green, principal investigator of the AVIRIS instrument.

Green continued, "Additionally, if a fire starts and authorities know exactly how much fuel is present in a region, the data will enable authorities to react quicker and provide a better assessment of how to approach extinguishing the fire and protect surrounding areas."

NASA has funded this effort as part of its ongoing research, but is sharing the data with universities and government agencies like the U.S. Geological Survey, the University of California, and the University of Utah. Scientists at these organizations are working together to achieve a better understanding of response to fires, fire behavior, impacts to forest carbon dynamics, total area burned and smoke aerosols -- all of which have impacts to disaster preparedness, prevention, human health and safety.

AVIRIS flew over the regions affected by the current fires during summer 2017 and will compare those observations with current measurements of fire temperatures and burn area to explore the relationship between fuel sources and the areas now burning. Flying these areas again in the coming months could help determine how severely the wildfires impacted the region and help quantify how plant life rejuvenates and repopulates in these areas.

For more information on AVIRIS, visit:

http://ift.tt/2A9lsJC

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-0474

Alan.buis@jpl.nasa.gov

Kate Squires

NASA Armstrong Flight Research Center, Edwards, Calif.

661-276-2020

kate.k.squires@nasa.gov

2017-315



from News and Features http://ift.tt/2AIND5y
via IFTTT

NASA Hosts Media Teleconference to Announce Latest Kepler Discovery

NASA will host a media teleconference at 1 p.m. EST Thursday, Dec. 14, to announce the latest discovery made by its planet-hunting Kepler space telescope.

from NASA Breaking News http://ift.tt/2AZcIK7
via IFTTT

Friday, 8 December 2017

NASA Selects Three Companies to Develop 'FabLab' Prototypes

NASA is taking the next step in the development of a space-based, on-demand fabrication capability by partnering with three U.S. companies, under NASA’s Next Space Technologies for Exploration Partnerships (NextSTEP) program, to create prototypes.

from NASA Breaking News http://ift.tt/2j3G7eU
via IFTTT

NASA Highlights Jupiter, Search for Life at American Geophysical Union

NASA researchers will present new findings on a wide range of Earth and space science topics at the annual meeting of the American Geophysical Union, Dec. 11-15 in New Orleans. NASA-related briefings will stream live on the agency’s website.

from NASA Breaking News http://ift.tt/2BTLh1A
via IFTTT

JPL Deploys a CubeSat for Astronomy


Tiny satellites called CubeSats have attracted a lot of attention in recent years. Besides allowing researchers to test new technologies, their relative simplicity also offers hands-on training to early-career engineers.

A CubeSat recently deployed from the International Space Station is a key example of their potential, experimenting with CubeSats applied to astronomy.

For the next few months, a technology demonstration called ASTERIA (Arcsecond Space Telescope Enabling Research in Astrophysics) will test whether a CubeSat can perform precise measurements of change in a star's light. This fluctuation is useful for a number of commercial and astrophysics applications, including the discovery and study of planets outside of our solar system, known as exoplanets.

ASTERIA was developed under the Phaeton Program at NASA's Jet Propulsion Laboratory in Pasadena, California. Phaeton was developed to provide early-career hires, under the guidance of experienced mentors, with the challenges of a flight project. ASTERIA is a collaboration with the Massachusetts Institute of Technology in Cambridge; MIT's Sara Seager is principal investigator on the project.

A New Space Telescope Model

ASTERIA relies on precision photometry, a field that measures the flux, or intensity, of an object's light. To be useful to any scientist, a space telescope has to correct for internal sources of error while making these measurements.

Engineers have learned to correct for "noise" in much larger space telescopes. If they were able to do the same for CubeSats, it could open an entirely new class of astronomy tools.

"CubeSats offer a relatively inexpensive means to test new technologies," said Amanda Donner of JPL, mission assurance manager for ASTERIA. "The modular design of CubeSats also makes them customizable, giving even a small group of researchers and students access to space."

She said it's even possible for constellations of these CubeSats to work in concert, covering more of the cosmos at one time.

A Steady Astronomy Camera

Its small size requires ASTERIA to have unique engineering characteristics.

  • A steady astronomy camera will keep the telescope locked on a specific star for up to 20 minutes continuously as the spacecraft orbits Earth.
  • An active thermal control system will stabilize temperatures within the tiny telescope while in Earth's shadow. This helps to minimize "noise" caused by shifting temperatures - essential when the measurement is trying to detect slight variations in the target star's light.

Both technologies proved challenging to miniaturize.

"One of the biggest engineering challenges has been fitting the pointing and thermal control electronics into such a small package," said JPL's Matthew Smith, ASTERIA's lead systems engineer and mission manager. "Typically, those components alone are larger than our entire spacecraft. Now that we've miniaturized the technology for ASTERIA, it can be applied to other CubeSats or small instruments."

Though it's only a technology demonstration, ASTERIA might point the way to future CubeSats useful to astronomy.

That's impressive, especially considering it was effectively a training project: many team members only graduated from college within the last five years, Donner said.

"We designed, built, tested and delivered ASTERIA, and now we're flying it," she said. "JPL takes the training approach of learning-by-doing seriously."

Caltech in Pasadena, California, manages JPL for NASA.

For more information about ASTERIA, visit:

http://ift.tt/2jHpp4U

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

2017-314



from News and Features http://ift.tt/2k82exf
via IFTTT

Thursday, 7 December 2017

NASA Mars Rover Team's Tilted Winter Strategy Works


NASA's senior Mars rover, Opportunity, has just passed the shortest-daylight weeks of the long Martian year with its solar panels in encouragingly clean condition for entering a potential dust-storm season in 2018.

Before dust season will come the 14th Earth-year anniversaries of Mars landings by the twin rovers Spirit and Opportunity in January 2004. Their missions were scheduled to last 90 Martian days, or sols, equivalent to about three months.

"I didn't start working on this project until about Sol 300, and I was told not to get too settled in because Spirit and Opportunity probably wouldn't make it through that first Martian winter," recalls Jennifer Herman, power subsystem operations team lead for Opportunity at NASA's Jet Propulsion Laboratory in Pasadena, California. "Now, Opportunity has made it through the worst part of its eighth Martian winter."

The minimum-sunlight period for southern Mars this year was in October and November. Mars takes 1.88 Earth years to orbit the Sun and, like Earth, it has a tilted axis, so it gets seasons resembling Earth's but nearly twice as long.

Both Opportunity and Spirt are in Mars' southern hemisphere, where the Sun appears in the northern sky during fall and winter, so solar-array output is enhanced by tilting the rover northward. Spirit could not maintain enough energy to survive through its fourth Martian winter, in 2009, after losing use of two wheels, long past their planned lifetime. It became unable to maneuver out of a sand trap to the favorable northward tilt.

Opportunity's current exploration of fluid-carved "Perseverance Valley" positioned it well for working productively through late fall and early winter this year. The rover has used stops at energy-favorable locations to inspect local rocks, examine the valley's shape and image the surroundings from inside the valley.

The valley runs downhill eastward on the inner slope of the western rim of Endurance Crater, which is 14 miles (22 kilometers) in diameter. Since entering the top of the valley five months ago, Opportunity's stops between drives have been at north-facing sites, on the south edge of the channel. The rover team calls the sites "lily pads" and plans routes from each one safely to the next, like a frog hopping from lily pad to lily pad.

Herman's role includes advising others on the team how much energy is available each sol for activities such as science observations and driving. "Relying on solar energy for Opportunity keeps us constantly aware of the season on Mars and the terrain that the rover is on, more than for Curiosity," she said. She performs the same role for NASA's younger Mars rover, Curiosity, which gets its electrical energy from a radioisotope thermoelectric generator instead of solar panels. Wintertime conditions affect use of electrical heaters and batteries on both rovers, but influence Opportunity's activities much more than Curiosity's.

Opportunity has not always been on such suitable terrain for winter operations. In its fifth winter, in 2011-2012, it spent 19 weeks at one spot because no other places with favorable tilt were within acceptable driving distance. In contrast, it kept busy its first winter in the southern half of a stadium-size crater, where all of the ground faced north.

Besides tilt and daylight length, other factors in Opportunity's power status include how much dust is on the solar array and in the sky. Wind can clean some dust off the array, but can also stir up dust storms that block sunlight and then drop dust onto the rover. Southern-hemisphere autumn and winter tend to have clear skies over Opportunity, but the amount of dust on the solar array going into autumn has varied year-to-year, and this year the array was dustier than in all but one of the preceding autumns.

"We were worried that the dust accumulation this winter would be similar to some of the worst winters we've had, and that we might come out of the winter with a very dusty array, but we've had some recent dust cleaning that was nice to see," Herman said. "Now I'm more optimistic. If Opportunity's solar arrays keep getting cleaned as they have recently, she'll be in a good position to survive a major dust storm. It's been more than 10 Earth years since the last one and we need to be vigilant."

Planet-encircling dust storms are most likely in southern spring and summer on Mars, though these storms don't happen every Martian year. The latest such storm, in 2007, sharply reduced available sunlight for Spirit and Opportunity, prompting emergency cutbacks in operations and communications to save energy. Some atmospheric scientists anticipate that Mars may get its next planet-encircling dust storm in 2018.

In coming months, scientists and engineers plan to continue using Opportunity to investigate how Perseverance Valley was cut into the crater rim. "We have not been seeing anything screamingly diagnostic, in the valley itself, about how much water was involved in the flow," said Opportunity Project Scientist Matt Golombek, of JPL. "We may get good diagnostic clues from the deposits at the bottom of the valley, but we don't want to be there yet, because that's level ground with no more lily pads."

For more information about Opportunity, visit:

http://ift.tt/2pDXe9k

http://ift.tt/2qpnSA0

News Media Contact

Guy Webster

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6278

guy.webster@jpl.nasa.gov

Laurie Cantillo / Dwayne Brown

NASA Headquarters, Washington

202-358-1077 / 202-358-1726

laura.l.cantillo@nasa.gov / dwayne.c.brown@nasa.gov

2017-313



from News and Features http://ift.tt/2nwUc60
via IFTTT

NASA Television to Air Launch of Next Space Station Resupply Mission

NASA commercial cargo provider SpaceX is now targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 11:46 a.m. EST Tuesday, Dec. 12.

from NASA Breaking News http://ift.tt/2kuCAH7
via IFTTT

Wednesday, 6 December 2017

Found: Most Distant Black Hole


Scientists have uncovered a rare relic from the early universe: the farthest known supermassive black hole. This matter-eating beast is 800 million times the mass of our Sun, which is astonishingly large for its young age. Researchers report the find in the journal Nature.

"This black hole grew far larger than we expected in only 690 million years after the Big Bang, which challenges our theories about how black holes form," said study co-author Daniel Stern of NASA's Jet Propulsion Laboratory in Pasadena, California.

Astronomers combined data from NASA's Wide-field Infrared Survey Explorer (WISE) with ground-based surveys to identify potential distant objects to study, then followed up with Carnegie Observatories' Magellan telescopes in Chile. Carnegie astronomer Eduardo Bañados led the effort to identify candidates out of the hundreds of millions of objects WISE found that would be worthy of follow-up with Magellan.

For black holes to become so large in the early universe, astronomers speculate there must have been special conditions to allow rapid growth -- but the underlying reason remains mysterious.

The newly found black hole is voraciously devouring material at the center of a galaxy -- a phenomenon called a quasar. This quasar is especially interesting because it comes from a time when the universe was just beginning to emerge from its dark ages. The discovery will provide fundamental information about the universe when it was only 5 percent of its current age.

"Quasars are among the brightest and most distant known celestial objects and are crucial to understanding the early universe," said co-author Bram Venemans of the Max Planck Institute for Astronomy in Germany.

The universe began in a hot soup of particles that rapidly spread apart in a period called inflation. About 400,000 years after the Big Bang, these particles cooled and coalesced

into neutral hydrogen gas. But the universe stayed dark, without any luminous sources, until gravity condensed matter into the first stars and galaxies. The energy released by these ancient galaxies caused the neutral hydrogen to get excited and ionize, or lose an electron. The gas has remained in that state since that time. Once the universe became reionzed, photons could travel freely throughout space. This is the point at which the universe became transparent to light.

Much of the hydrogen surrounding the newly discovered quasar is neutral. That means the quasar is not only the most distant -- it is also the only example we have that can be seen before the universe became reionized.

"It was the universe's last major transition and one of the current frontiers of astrophysics," Bañados said.

The quasar's distance is determined by what's called its redshift, a measurement of how much the wavelength of its light is stretched by the expansion of the universe before reaching Earth. The higher the redshift, the greater the distance, and the farther back astronomers are looking in time when they observe the object. This newly discovered quasar has a redshift of 7.54, based on the detection of ionized carbon emissions from the galaxy that hosts the massive black hole. That means it took more than 13 billion years for the light from the quasar to reach us.

Scientists predict the sky contains between 20 and 100 quasars as bright and as distant as this quasar. Astronomers look forward to the European Space Agency's Euclid mission, which has significant NASA participation, and NASA's Wide-field Infrared Survey Telescope (WFIRST) mission, to find more such distant objects.

"Withseveral next-generation, even-more-sensitive facilities currentlybeing built, we can expect many exciting discoveries in the very earlyuniverse in the coming years," Stern said.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Elizabeth Landau

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6425

elizabeth.landau@jpl.nasa.gov

Eduardo Bañados

Carnegie Observatories, Pasadena, Calif.

626-304-0236

ebanados@carnegiescience.edu

2017-312



from News and Features http://ift.tt/2ksfqRv
via IFTTT

NASA Television Coverage Set for Space Station Crew Landing, Launch

Three crew members on the International Space Station are scheduled to end their mission and return to Earth on Thursday, Dec. 14, just days before another three space travelers begin their mission. Live coverage will air on NASA Television and the agency’s website.

from NASA Breaking News http://ift.tt/2k2fDah
via IFTTT

Tuesday, 5 December 2017

NASA Invites Media to Orion Spacecraft Parachute Test in Arizona

NASA is inviting media to attend a test of parachutes for the agency’s Orion spacecraft Wednesday, Dec. 13, at the U.S. Army’s Yuma Proving Ground in Arizona.

from NASA Breaking News http://ift.tt/2ATVJZj
via IFTTT

Saturday, 2 December 2017

JPL Invention Challenge: Students, Pros, Wiffle Balls


Catapults and leaf-blowers were among the many innovative devices built by students for the 2017 Invention Challenge, an annual engineering competition at NASA's Jet Propulsion Laboratory, Pasadena, California.

Middle schools and high schools were represented from across the greater Los Angeles area. Three teams even required passports, with students coming from Tanzania and Ethiopia.

This year's "Wiffle Ball Loft Contest" required competitors to create a device to launch up to 10 wiffle balls into a plastic tub located 19 feet, 8 inches (6 meters) away within a one-minute time allotment. The challenges were many: launching at the best angles with the varying wind directions; making sure the device was initiated by only one method; and even preventing the wiffle ball from breaking, which would result in disqualification.

The winners were from Southern California: "Project Defying Gravity" from Diamond Bar High School; "Cre8tive" from South East High School in Southgate; and "The Lizards" from Lawndale High School.

Paul MacNeal, a mechanical systems engineer at JPL, created the Invention Challenge 20 years ago to inspire students to pursue careers in engineering -- and have fun in the process. MacNeal said the event has influenced previous participants to recreate the competition in their local communities -- as far away as Istanbul.

"When I was in high school, I thought being involved with NASA-JPL was unattainable," MacNeal said. "I wanted to change that and inspire competitors to pursue engineering careers."

Yasin Giray, an Ethiopian volunteer teacher who brought the Ethiopian team to JPL, said Africa generally does not have enough opportunities for his students to show their skills in the science and technology fields.

"We encountered some difficulties along the way. Ethiopia does not sell the wiffle balls used in the contest, so we practiced with balls made of a different plastic," Giray said. "We could only practice when we arrived in the U.S., but we knew we had to take this opportunity."

Diamond Bar High School's first place team, "Project Defying Gravity," was a team of two. They developed a device elastically powered through a surgical tube calibrated to use multiple strengths to adjust to changing winds.

"A specific gelato container is the perfect size to fit a wiffle ball. So, we ate a lot of ice cream to use them in our device," Megan Ho, one of the two team members said. "I feel elated that we won. This competition has made me want to pursue engineering more -- specifically mechanical engineering."

Kenneth Chew, from the "PACKS" team representing Diamond Bar, was so inspired by JPL missions and launches that he brought lucky peanuts for his team to eat before launch - a JPL tradition before major mission events. He even designed a mission logo inspired by JPL mission patches.

Caltech in Pasadena, California, manages JPL for NASA.

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

Written by: Elyssia Widjaja

2017-211



from News and Features http://ift.tt/2BDYP16
via IFTTT

The Voyagers in Popular Culture


Whether you're traveling across cities, continents or even oceans this holiday season, there is no long-haul flight quite like that of the Voyagers.

This year, we celebrated 40 years since the launch of NASA's twin Voyager probes -- the two farthest, fastest spacecraft currently in operation. Each Voyager has contributed an enormous amount of knowledge about the solar system, including the unexpected diversity of its planets and their moons. Among their many distinctions, Voyager 1 is the only spacecraft to enter interstellar space, and Voyager 2 is the only spacecraft to fly by all four giant planets: Jupiter, Saturn, Uranus and Neptune.

› DOWNLOAD VIDEO Voyager Images from the Odysseys

You might have missed the virtual Voyager party, though, since there was a lot of other space news around the time of the Voyager launch anniversaries. The solar eclipse, visible across America, took place on Aug. 21, just one day after Voyager 2 marked 40 years in flight. Sept. 5 was Voyager 1's launch anniversary, but space fans were already gearing up to commemorate the finale of NASA's Cassini mission on Sept. 15.

Don't worry -- it's never too late to appreciate the far-reaching influence the Voyagers have had. In fact, in addition to the news coverage the spacecraft have received, the spacecraft have also earned a place in popular culture.

So, since you might have some downtime as we head into the holidays, here are some Voyager-related movies, TV shows and songs. (Warning: a few spoilers ahead!)

Voyagers in Film and Television

Perhaps the most widely recognized pop culture Voyager homage is in the film "Star Trek: The Motion Picture" from 1979. In the film, a machine called V'Ger -- the fictional Voyager 6 spacecraft, its intelligence greatly enhanced by an alien race -- seeks the home of its creator, Earth, and threatens to wreak havoc on our planet in the process. In real life, John Casani, who was the Voyager project manager at that time at NASA's Jet Propulsion Laboratory in Pasadena, California, offered to loan a Voyager model to "Star Trek" creator Gene Roddenberry. Although the movie version altered the original design, it still used the mission as an inspiration.

The spacecraft had long passed the planets when a 2004 episode of "The West Wing" -- titled "The Warfare of Genghis Khan" -- mentioned a major mission milestone: Voyager 1 crossing the termination shock. The termination shock is a shockwave that marks the point at which the solar wind from the Sun, which travels at supersonic speeds up to that point, abruptly slows down and heats up. It represents the innermost part of the boundary of the heliosphere, the magnetic bubble that includes the Sun, planets and solar wind. Due to the termination shock crossing, the character Josh Lyman (mistakenly) declares this Voyager 1 to be the first man-made object to leave our solar system (mistakenly, because the solar system ends well beyond that landmark). "Funny, I'm going through a little termination shock myself," quips the character Donna Moss.

More recently, Voyager 1 did, in real life, cross into interstellar space in 2012, although technically it has still not left the solar system. In 2013, to talk about that milestone, the mission's project scientist, Ed Stone of Caltech in Pasadena, appeared on Comedy Central's Colbert Report.

The Golden Record

Each Voyager contains a copy of a Golden Record filled with Earth's sights and sounds, including images, music and audio clips of people and animals. This record has been featured in several works of science fiction. In the 1984 film "Starman," a race of aliens discovers the record and sends an emissary to Earth to learn more about our planet.

A 1994 episode of the X-Files titled "Little Green Men" also paid homage to Voyager. The episode opens with FBI agent Fox Mulder describing the Voyager mission and the Golden Record, including images, music and a child's voice saying, "Hello from the children of planet Earth." Mulder says the Voyagers passed the orbit of Neptune and "there were no further messages sent," but in reality, the Voyagers still communicate with Earth every day.

The mission wasn't exempt from fun on "Saturday Night Live." In episode 64, which aired in 1978, a psychic played by actor Steve Martin says the extraterrestrials had found the record and replied, "Send More Chuck Berry" -- referring to the iconic song "Johnny B. Goode" included on the Golden Record. Learn more about the Golden Record and see a full list of its contents here.

And More

Voyager has proved inspirational to contemporary musicians and songwriters as well. The Academy Award-winning composer Dario Marianelli wrote a Voyager violin concerto that had its world premiere in 2014 in Brisbane, Australia, and was subsequently played by the London Symphony Orchestra in 2015. Artist James Stretton also wrote a song in honor of the Voyagers' 40th anniversary.

For a deep dive into the history of the mission, the documentary "The Farthest" premiered on PBS in August, featuring numerous interviews with Voyager scientists and engineers, past and present.

And if you get tired of looking at your own vacation photos, there are lots to explore on the Voyager website. Live long and prosper, Voyagers!

The Voyager spacecraft were built by NASA's Jet Propulsion Laboratory, Pasadena, California, which continues to operate both. JPL is a division of Caltech in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington. For more information about the Voyager spacecraft, visit:

http://ift.tt/2tZGsDD

http://ift.tt/2pq4zpS

News Media Contact

Elizabeth Landau

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6425

elizabeth.landau@jpl.nasa.gov

2017-309



from News and Features http://ift.tt/2nmUZXe
via IFTTT

Voyager 1 Fires Up Thrusters After 37


If you tried to start a car that's been sitting in a garage for decades, you might not expect the engine to respond. But a set of thrusters aboard the Voyager 1 spacecraft successfully fired up Wednesday after 37 years without use.

Voyager 1, NASA's farthest and fastest spacecraft, is the only human-made object in interstellar space, the environment between the stars. The spacecraft, which has been flying for 40 years, relies on small devices called thrusters to orient itself so it can communicate with Earth. These thrusters fire in tiny pulses, or "puffs," lasting mere milliseconds, to subtly rotate the spacecraft so that its antenna points at our planet. Now, the Voyager team is able to use a set of four backup thrusters, dormant since 1980.

"With these thrusters that are still functional after 37 years without use, we will be able to extend the life of the Voyager 1 spacecraft by two to three years," said Suzanne Dodd, project manager for Voyager at NASA's Jet Propulsion Laboratory, Pasadena, California.

Since 2014, engineers have noticed that the thrusters Voyager 1 has been using to orient the spacecraft, called "attitude control thrusters," have been degrading. Over time, the thrusters require more puffs to give off the same amount of energy. At 13 billion miles from Earth, there's no mechanic shop nearby to get a tune-up.

The Voyager team assembled a group of propulsion experts at NASA's Jet Propulsion Laboratory, Pasadena, California, to study the problem. Chris Jones, Robert Shotwell, Carl Guernsey and Todd Barber analyzed options and predicted how the spacecraft would respond in different scenarios. They agreed on an unusual solution: Try giving the job of orientation to a set of thrusters that had been asleep for 37 years.

"The Voyager flight team dug up decades-old data and examined the software that was coded in an outdated assembler language, to make sure we could safely test the thrusters," said Jones, chief engineer at JPL.

In the early days of the mission, Voyager 1 flew by Jupiter, Saturn, and important moons of each. To accurately fly by and point the spacecraft's instruments at a smorgasbord of targets, engineers used "trajectory correction maneuver," or TCM, thrusters that are identical in size and functionality to the attitude control thrusters, and are located on the back side of the spacecraft. But because Voyager 1's last planetary encounter was Saturn, the Voyager team hadn't needed to use the TCM thrusters since November 8, 1980. Back then, the TCM thrusters were used in a more continuous firing mode; they had never been used in the brief bursts necessary to orient the spacecraft.

All of Voyager's thrusters were developed by Aerojet Rocketdyne. The same kind of thruster, called the MR-103, flew on other NASA spacecraft as well, such as Cassini and Dawn.

On Tuesday, Nov. 28, 2017, Voyager engineers fired up the four TCM thrusters for the first time in 37 years and tested their ability to orient the spacecraft using 10-millisecond pulses. The team waited eagerly as the test results traveled through space, taking 19 hours and 35 minutes to reach an antenna in Goldstone, California, that is part of NASA's Deep Space Network.

Lo and behold, on Wednesday, Nov. 29, they learnedthe TCM thrusters worked perfectly -- and just as well as the attitude control thrusters.

"The Voyager team got more excited each time with each milestone in the thruster test. The mood was one of relief, joy and incredulity after witnessing these well-rested thrusters pick up the baton as if no time had passed at all," said Barber, a JPL propulsion engineer.

The plan going forward is to switch to the TCM thrusters in January. To make the change, Voyager has to turn on one heater per thruster, which requires power -- a limited resource for the aging mission. When there is no longer enough power to operate the heaters, the team will switch back to the attitude control thrusters.

The thruster test went so well, the team will likely do a similar test on the TCM thrusters for Voyager 2, the twin spacecraft of Voyager 1. The attitude control thrusters currently used for Voyager 2 are not yet as degraded as Voyager 1's, however.

Voyager 2 is also on course to enter interstellar space, likely within the next few years.

The Voyager spacecraft were built by JPL, which continues to operate both. JPL is a division of Caltech in Pasadena. The Voyager missions are a part of the NASA Heliophysics System Observatory, sponsored by the Heliophysics Division of the Science Mission Directorate in Washington. For more information about the Voyager spacecraft, visit:

http://ift.tt/2tZGsDDhttp://ift.tt/2pq4zpS

News Media Contact

Elizabeth Landau

Jet Propulsion Laboratory, Pasadena, Calif.

818-354-6425

elizabeth.landau@jpl.nasa.gov

2017-310



from News and Features http://ift.tt/2zVCEq8
via IFTTT

Friday, 1 December 2017

NASA Television to Air Launch of Next Space Station Resupply Mission

NASA commercial cargo provider SpaceX is targeting its 13th commercial resupply services mission to the International Space Station for no earlier than 1:20 p.m. EST Friday, Dec. 8.

from NASA Breaking News http://ift.tt/2kexG0M
via IFTTT

Take the Driver's Seat on Sea Level Science


A new NASA sea level simulator lets you bury Alaska's Columbia glacier in snow, and, year by year, watch how it responds. Or you can melt the Greenland and Antarctic ice sheets and trace rising seas as they inundate the Florida coast.

Computer models are critical tools for understanding the future of a changing planet, including melting ice, rising seas and shifting precipitation patterns. But typically, these mathematical representations -- long chains of computer code giving rise to images of dynamic change -- are accessible mainly to scientists.

› DOWNLOAD VIDEO DIY Glacier Modeling with NASA's Virtual Earth System Laboratory

The new simulator, however, allows anyone with a computer to perform idealized experiments with sea level and learn about its complexities. Developed by scientists at NASA's Jet Propulsion Laboratory in Pasadena, California, the interactive platform, called the Virtual Earth System Laboratory (VESL), provides the public with a taste of how NASA models important Earth processes.

The platform will also prove useful to scientists as a convenient way to create visual representations of data.

While many interface tools are available to explore sea level effects, VESL stands apart for its strong representation of Earth's cryosphere - the melting ice caps, ice sheets and glaciers that are major contributors to sea level rise.

And the simulator is not just a simplified version of a model or a menu of preexisting results. It is direct access to the complex, number-crunching model itself, though with limited scenarios and factors that can be adjusted.

"It's the real software, being used on the fly, live, without being prerecorded or precomputed," said Eric Larour of JPL, who led VESL's development. "You have access to a segment of an ice sheet model or sea level model, running NASA's software."

Despite these capabilities, VESL won't overtax computers.

"A key to making the interface tool work is cloud computing," Larour said. Instead of burdening your own computer with heavy demand, "you can access a JPL cloud to run big simulations."

The VESL platform allows the user to control one or two parameters for each model scenario. For example, in a version of the model configured to represent Columbia Glacier, a slider allows users to change snowfall amounts and examine how the change affects the glacier's behavior in subsequent years. For a sea level simulation, sliders control the rates at which the ice sheets on Antarctica and Greenland are melting.

"You can explore different aspects of the model that maybe even the scientists didn't explore," Larour said.

The site will be updated frequently to keep up with the latest, peer-reviewed research. Scientists will eventually be able to use the graphical interface to display and present new data sets or model results, while lay users will be able to replicate published research results for themselves using models that are "open source," or publicly available.

"As we make progress, [the public] can rerun the science that we actually do," Larour said. "If anybody has concerns or finds issues with our simulation, they have the ability to replicate our results. We would welcome feedback and inputs to improve our science."

VESL was developed over five years by members of the Ice Sheet System Model development team at JPL and the University of California, Irvine (UCI), with the help of several students, including Dan Cheng from UCI and Gilberto Perez, who attended both Cal Poly Pomona and UCI.

The website hosting the simulator will also include a public outreach section, being developed by Daria Halkides, a scientist and outreach exhibit developer of Earth & Space Research in Seattle and a JPL affiliate.

"VESL was initially intended for scientists," Larour said. "Then we realized it could also be an excellent tool for public outreach. These simulations are so easy to run, and visually so compelling, that any person from the public can go and run them and probably understand what is going on."

You can find VESL at:

http://ift.tt/2zTTdiX

A paper describing the development of the ice sheet simulator, titled "A JavaScript API for the Ice Sheet System Model: Towards on online interactive model for the Cryosphere Community," appears today in the journal Geoscientific Model Development.

News Media Contact

Alan Buis

Jet Propulsion Laboratory, Pasadena, California

818-354-0474

Alan.Buis@jpl.nasa.gov

Written by Pat Brennan

NASA's Sea Level Portal

2017-308



from News and Features http://ift.tt/2itJ9ZB
via IFTTT

Station Science Top News: Dec. 20, 2024

A method for evaluating thermophysical properties of metal alloys Simulation of the solidification of metal alloys, a key step in certain i...