Monday, 28 September 2015

How Rosetta’s comet got its shape

This news item is mirrored from the main ESA Web Portal. Two comets collided at low speed in the early Solar System to give rise to the distinctive ‘rubber duck’ shape of Comet 67P/Churyumov–Gerasimenko, say Rosetta scientists. The origin of the comet’s double-lobed form has been a key question since Rosetta first revealed its surprising shape in July 2014. Two leading ideas emerged: did two comets merge or did localised erosion of a single object form the ‘neck’? Now, scientists have an unambiguous answer to the conundrum. By using high-resolution images taken between 6 August 2014 and 17 March 2015 to study the layers of material seen all over the nucleus, they have shown that the shape arose from a low-speed collision between two fully fledged, separately formed comets. “It is clear from the images that both lobes have an outer envelope of material organised in distinct layers, and we think these extend for several hundred metres below the surface,” says Matteo Massironi, lead author from the University of Padova, Italy, and an associate scientist of the OSIRIS team. “You can imagine the layering a bit like an onion, except in this case we are considering two separate onions of differing size that have grown independently before fusing together.” The results of the study are reported in the journal Nature and were presented today at the European Planetary Science Congress in Nantes, France. To reach their conclusion, Matteo and his colleagues first used images to identify over 100 terraces seen on the surface of the comet, and parallel layers of material clearly seen in exposed cliff walls and pits. A 3D shape model was then used to determine the directions in which they were sloping and to visualise how they extend into the subsurface. It soon became clear that the features […]

from Rosetta - ESA's comet chaser » Rosetta - ESA's comet chaser http://ift.tt/1MUeJam
via IFTTT

No comments:

Post a Comment

Station Science Top News: Dec. 20, 2024

A method for evaluating thermophysical properties of metal alloys Simulation of the solidification of metal alloys, a key step in certain i...