Saturday, 22 March 2025

Shocking Spherules!

3 min read

Shocking Spherules!

Written by Alex Jones, Ph.D. candidate at Imperial College London

Last week the Perseverance Science Team were astonished by a strange rock comprised of hundreds of millimeter-sized spheres… and the team are now working hard to understand their origin. 

A closeup photo of a Martian rock shows a rough, bubbly texture that ranges in color from pale brownish-orange around the edges, to more gray-tinged orange nearer the center. Many of the bumps or bubbles are spherical, others are crushed or halved, looking like a jar of spilled gray capers, mingled with some creamy, orange-colored sauce.
This image from NASA’s Mars Perseverance rover, a fusion-processed SuperCam Remote Micro Imager (RMI) mosaic, shows part of the “St. Pauls Bay” target, acquired from the lower Witch Hazel Hill area of the Jezero crater rim. The image reveals hundreds of strange, spherical-shaped objects comprising the rock. Perseverance acquired this image on March 11, 2025, or sol 1442 — Martian day 1,442 of the Mars 2020 mission.
NASA/JPL-Caltech/LANL/CNES/IRAP.

It has now been two weeks since Perseverance arrived at Broom Point, situated at the lower slopes of the Witch Hazel Hill area, on the Jezero crater rim. Here, a series of light- and dark- toned bands were visible from orbit, and just last week the rover successfully abraded and sampled one of the light-toned beds. It was from this sampling workspace where Perseverance spied a very strange texture in a nearby rock… 

The rock, named “St. Pauls Bay” by the team, appeared to be comprised of hundreds of millimeter-sized, dark gray spheres. Some of these occurred as more elongate, elliptical shapes, while others possessed angular edges, perhaps representing broken spherule fragments. Some spheres even possessed tiny pinholes! What quirk of geology could produce these strange shapes? 

This isn’t the first time strange spheres have been spotted on Mars. In 2004, the Mars Exploration Rover Opportunity spotted so-called, “Martian Blueberries” at Meridiani Planum, and since then, the Curiosity rover has observed spherules in the rocks of Yellowknife Bay at Gale crater. Just a few months ago, Perseverance itself also spied popcorn-like textures in sedimentary rocks exposed in the Jezero crater inlet channel, Neretva Vallis. In each of these cases, the spherules were interpreted as concretions, features that formed by interaction with groundwater circulating through pore spaces in the rock. Not all spherules form this way, however. They also form on Earth by rapid cooling of molten rock droplets formed in a volcanic eruption, for instance, or by the condensation of rock vaporized by a meteorite impact.  

A color photo from the Martian surface shows pale brownish-orange fine soil with several small and medium sized rocks poking above the surface, lighter-toned than the surrounding soil, mostly flat with varied edges and cracks. One exception stands out at the middle right of the image, dark gray and slightly larger than everything else around, vaguely diamond-shaped — from the viewer’s vantage point — and covered everywhere on its surface in tiny bumps.
NASA’s Mars Perseverance rover acquired this image of the “St. Pauls Bay” target (the dark-toned float block in the right of the view) using its Left Mastcam-Z camera, one of a pair of cameras located high on the rover’s remote-sensing mast. Perseverance acquired this image on March 13, 2025 — sol 1444, or Martian day 1,444 of the Mars 2020 mission — at the local mean solar time of 11:57:49.
NASA/JPL-Caltech/ASU

Each of these formation mechanisms would have vastly different implications for the evolution of these rocks, so the team is working hard to determine their context and origin. St. Pauls Bay, however, was float rock — a term used by geologists to describe something that is not in-place. The team are now working to link the spherule-rich texture observed at St. Pauls Bay to the wider stratigraphy at Witch Hazel Hill, and initial observations have provided tantalizing indications that it could be linked to one of the dark-toned layers identified by the team from orbit. Placing these features in geologic context will be critical for understanding their origin, and determining their significance for the geological history of the Jezero crater rim and beyond! 

Share

Details

Last Updated
Mar 21, 2025

Related Terms



from NASA https://ift.tt/ofnTbLz

CAS Discovery and Foresight

4 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A person hands a dry erase marker to another person while facing a white board filled with a diagram describing NASA's CAS Discovery process.
A NASA researcher and innovation architect from the Convergent Aeronautics Solutions project Discovery team collaborating at a whiteboard during a visit to Chapel Hill, N.C. on Aug. 13, 2024.
NASA / Ariella Knight

Convergent Aeronautics Solutions (CAS) Discovery identifies problems worth solving for the benefit of all.

We formulate “convergent” problems—across multiple disciplines and sectors—and build footholds toward potentially transformative opportunities in aeronautics. As aeronautics rapidly advances, it is increasingly intersecting with other sectors like energy, healthcare, emergency response, economic resilience, the space economy, and more.

CAS Discovery builds new innovation tools and methods, a workforce adept at innovation methods, and transdisciplinary teams of researchers within and beyond NASA that conduct regular “Discovery sprints”—expeditions into cross-sector topic areas that could beneficially transform aeronautics and humanity.

WHAT is Discovery?

Participatory

It is difficult to understand and effectively address stakeholders’ needs & capabilities without engaging them. Discovery, in consultation with key NASA offices and other government agencies, has honed mechanisms to lawfully and respectfully engage and invite participation from stakeholders, communities, industry, NGOs and government to collaboratively formulate complex societal challenges tied to aviation. 

Convergent

Typical organizational structures limit convergence across knowledge boundaries. CAS Discovery is intentionally cross-sector and transdisciplinary because the most impactful ideas often lie at the intersection of boundaries, the borderlands where multiple disciplines and communities come together. We work to emerge multi-sector, system-of-systems challenges that integrate political, economic, social, technological, environmental, legal and ethical trends, needs, and capabilities.

Future-Focused

Organizations have a tendency of being driven by short-term thinking and relatively short time horizons. CAS Discovery uses strategic foresight methods to examine 20 to 50-year time horizons, systematically ingesting and synthesizing signals and trends from aero and non-aero sources to envision a variety of scenarios to uncover opportunities for the future of aeronautics.

Ecosystemic

We study the ecosystems that are part of aeronautics and aerospace. This helps in broadening consideration of impacts while practicing foresight. It enhances our awareness of the environment and gives stakeholders the ability to see ripple effects across technologies, economies, communities, etc. We seek to benefit the wellness of the entire ecosystem while also benefiting the constituents.

A group of people posing in front of a wall with a white board behind them and a clock overhead.
A group of NASA researchers and leaders from the Convergent Aeronautics Solutions project Discovery team at the agency’s Glenn Research Center in Cleveland, on April 30, 2024.
NASA / Ricaurte Chock

WHO is Discovery?

NASA Researchers

They are the engine that propels CAS Discovery. Our cross-center Discovery sprint and foresight teams are composed of researchers from NASA’s Ames Research Center and Armstrong Flight Research Center in California, Glenn Research Center in Cleveland, and Langley Research Center in Virginia.

Researchers from Outside of NASA

They collaborate with us as subject matter experts or Discovery sprint team members to contribute their backgrounds in fields less common within NASA, such as energy, economics, anthropology, and other areas. This collaboration happens through many mechanisms, such as freelancing, crowdsourcing, interviews, webinars, and podcasts.

Stakeholders

They are engaged in various ways and to different degrees, often co-envisioning potential futures, co-formulating problems, and co-designing solutions.

Innovation Architects

They are the glue that holds CAS Discovery together and the anti-glue that keeps our teams from getting stuck. They come from a wide range of experience, each bringing deep expertise in leading transdisciplinary teams and stakeholders through processes and methods from strategic foresight, complex systems design, human-centered design, and more.

CAS Center Integration Leads (CILs)

They work with NASA line management at each Aeronautics center to bring NASA researchers and potential new PIs into CAS. CILs also host annual Wicked Wild idea pitch events to bring new problem areas and solution ideas into CAS Discovery and early Execution phases.

  • Ames Research Center CIL: Ty Huang
  • Armstrong Flight Research Center CIL: Matt Kearns 
  • Glenn Research Center CIL: Jeffrey Chin
  • Langley Research Center CIL: Devin Pugh-Thomas

CAS Discovery Leads

They oversee Discovery sprint and strategic foresight teams, topics, and processes; new tools and continuous improvement experiments; and the overall health of the CAS innovation front-end pipeline and related strategic outputs.

  • Discovery Lead: Eric Reynolds Brubaker, Langley Research Center
  • Foresight Lead: Vikram Shyam, Glenn Research Center

Sample Discovery Publications

COMING SOON: Links to Technical Memorandums and conference papers.

Share

Details

Last Updated
Mar 21, 2025
Editor
Jim Banke
Contact
Diana Fitzgerald


from NASA https://ift.tt/BFb4pzu

NASA Reveals Semifinalists of Power to Explore Challenge

4 min read

NASA Reveals Semifinalists of Power to Explore Challenge

A collage of words that show the “superpowers” of the 45 semifinalists, including words like resilience, persistence, communication, determination, and curiosity, to name a few.
A word cloud showing “superpowers” of the 45 semifinalists.
NASA/David Lam

NASA selected 45 student essays as semifinalists of its 2024-2025 Power to Explore Challenge, a national competition for K-12 students featuring the enabling power of radioisotopes. Contestants were challenged to explore how NASA has powered some of its most famous science missions and to dream up how their personal “superpower” would energize their success on their own radioisotope-powered science mission to explore one of the nearly 300 moons of our solar system.

The competition asked students to learn about radioisotope power systems (RPS), a type of “nuclear battery” that NASA uses to explore the harshest, darkest, and dustiest parts of our solar system. RPS have enabled many spacecraft to explore a variety of these moons, some with active volcanoes, methane lakes, and intricate weather patterns similar to Earth. Many of these moons remain a mystery to us.

This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high.

Carl Sandifer II

Carl Sandifer II

Program Manager, NASA Radioisotope Power Systems Program

In 275 words or less, students wrote about a mission of their own that would use these space power systems to explore any moon in our solar system and described their own power to achieve their mission goals.

The Power to Explore Challenge offered students the opportunity to learn more about these reliable power systems, celebrate their own strengths, and interact with NASA’s diverse workforce. This year’s contest set a record, receiving 2,051 submitted entries from all 50 states, Guam, U.S. Virgin Islands, American Samoa, Northern Mariana Islands, Puerto Rico, and the Department of Defense Education Activity (DoDEA) Overseas.

“This year’s submissions to NASA’s Power to Explore Challenge were immensely enthralling, and we’re thrilled that the number of entries reached a record high,” said Carl Sandifer II, program manager of the Radioisotope Power Systems Program at NASA’s Glenn Research Center in Cleveland. “It was particularly interesting to see which moons the students selected for their individual essays, and the mysteries they hope to unravel. Their RPS-powered mission concepts always prove to be innovative, and it’s a joy to learn about their ‘superpowers’ that exemplify their path forward as the next generation of explorers.” 

Entries were split into three categories: grades K-4, 5-8, and 9-12. Every student who submitted an entry received a digital certificate, and over 4,859 participants who signed up received an invitation to the Power Up with NASA virtual event. Students learned about what powers the NASA workforce utilizes to dream big and work together to explore. Speakers included Carl Sandifer II, Dr. Wanda Peters, NASA’s deputy associate administrator for programs in the Science Mission Directorate and Dr. Zibi Turtle, principal investigator for NASA’s Dragonfly mission from the John Hopkins Applied Physics Laboratory.

Fifteen national semifinalists in each grade category (45 semifinalists total) have been selected. These participants also will receive a NASA RPS prize pack. Finalists for this challenge will be announced on April 23.

Grades K-4

  • Vihaan Akhoury, Roseland, NJ
  • Ada Brolan, Somerville, MA
  • Ashwin Cohen, Washington D.C
  • Unnathi Chandra Devavarapu, San Marcos, CA
  • Levi Fisher, Portland, OR
  • Tamanna Ghosh, Orlando, FL
  • Ava Goodison, Arnold, MD
  • Anika Lal, Pflugerville, TX
  • Diya Loganathan, Secaucus, NJ
  • Mini M, Ann Arbor, MI
  • Mark Porter, Temple Hills, MD
  • Rohith Thiruppathy, Canton, MI
  • Zachary Tolchin, Guilford CT
  • Kavin Vairavan, West Windsor Township, NJ
  • Terry Xu, Arcadia, CA

Grades 5-8

  • Chowdhury Wareesha Ali, Solon OH
  • Caydin Brandes, Los Angeles, CA
  • Caleb Braswell, Crestview, FL
  • Lilah Coyan, Spokane, WA
  • Ashwin Dhondi Kubeer, Phoenix, AZ
  • Jonathan Gigi, Cypress, TX
  • Gagan Girish, Portland, OR
  • Maggie Hou, Snohomish, WA
  • Sanjay Koripelli, Louisville, KY
  • Isaiah Muniz, South Orange, NJ
  • Sarabhesh Saravanakumar, Bothell, WA
  • Eliya Schubert, Katonah, NY
  • Gabriel Traska, Fort Woth, TX
  • Jaxon Verbeck, Riggins, ID
  • Krish Vinodhkumar, Monrovia, MD

Grades 9-12

  • Samaria Berry, Kinder, LA
  • David Cai, Saipan, MP
  • Reggie Castro, Saipan, MP
  • Ryan Danyow, Rutland City, VT
  • Faiz Karim, Jericho, NY
  • Sakethram Kuncha, Chantilly, VA
  • Katerina Morin, Miami, FL
  • Emilio Olivares, Edmond, OK
  • Kairat Otorov, Trumbull, CT
  • Dev Rai, Herndon, VA
  • Shaurya Saxena, Irving, TX
  • Saanvi Shah, Bothell, WA
  • Niyant Sithamraju, San Ramon, CA
  • Anna Swenson, Henderson, NV
  • Alejandro Valdez, Orlando, FL

About the Challenge

The Power to Explore Student Challenge is funded by the NASA Science Mission Directorate’s Radioisotope Power Systems Program Office and managed and administered by Future Engineers under the direction of the NASA Tournament Lab, a part of the Prizes, Challenges, and Crowdsourcing Program in NASA’s Space Technology Mission Directorate.

Kristin Jansen
NASA’s Glenn Research Center



from NASA https://ift.tt/ktQ6aUV

Friday, 21 March 2025

Hubble Captures a Neighbor’s Colorful Clouds

2 min read

Hubble Captures a Neighbor’s Colorful Clouds

An area of space filled with stars. Most of the stars are small, distant dots in a range of orange colors; closer stars shine with a bright glow and hold four thin diffraction spikes around them. These closer stars appear both bluish and reddish. Clouds from a nebula cover the left half of the scene, giving it a blue-greenish cast. More pieces of cloud also drift over the black background of space on the right side of the image.
This NASA/ESA Hubble Space Telescope image features part of the Small Magellanic Cloud.
ESA/Hubble & NASA, C. Murray

Say hello to one of the Milky Way’s neighbors! This NASA/ESA Hubble Space Telescope image features a scene from one of the closest galaxies to the Milky Way, the Small Magellanic Cloud (SMC). The SMC is a dwarf galaxy located about 200,000 light-years away. Most of the galaxy resides in the constellation Tucana, but a small section crosses over into the neighboring constellation Hydrus.

Thanks to its proximity, the SMC is one of only a few galaxies that are visible from Earth without the help of a telescope or binoculars. For viewers in the southern hemisphere and some latitudes in the northern hemisphere, the SMC resembles a piece of the Milky Way that has broken off, though in reality it’s much farther away than any part of our own galaxy.

With its 2.4-meter mirror and sensitive instruments, Hubble’s view of the SMC is far more detailed and vivid than what humans can see. Researchers used Hubble’s Wide Field Camera 3 to observe this scene through four different filters. Each filter permits different wavelengths of light, creating a multicolored view of dust clouds drifting across a field of stars. Hubble’s view, however, is much more zoomed-in than our eyes, allowing it to observe very distant objects. This image captures a small region of the SMC near the center of NGC 346, a star cluster that is home to dozens of massive young stars.

Media Contact:

Claire Andreoli (claire.andreoli@nasa.gov)
NASA’s Goddard Space Flight CenterGreenbelt, MD



from NASA https://ift.tt/wvOVKag

Sols 4484-4485: Remote Sensing on a Monday

4 min read

Sols 4484-4485: Remote Sensing on a Monday

A grayscale photograph of the Martian surface by the Curiosity rover captures medium gray soil next to the rover with exposed medium-sized, lighter-colored rocks scattered around. Most of the rocks appear layered, with dividing lines making them look like features drawn on a topographic map. The bottom of the frame shows parts of the rover, running from the middle left edge to the lower right corner of the image, including part of its robotic arm which carries a nameplate imprinted with “Curiosity” outlined in white, all-capital letters, and to the right of that a line drawing of the rover.
NASA’s Mars rover Curiosity acquired this image using its Left Navigation Camera on March 17, 2025 — sol 4483, or Martian day 4,483 of the Mars Science Laboratory mission — at 09:38:17 UTC.
NASA/JPL-Caltech

Written by Conor Hayes, Graduate Student at York University

Earth planning date: Monday, March 17, 2025

Last week I was in Houston, Texas, at the Lunar and Planetary Science Conference. The mid-March weather in Houston is often more like mid-summer weather here in Toronto, so it has been a bit of a shock coming home to temperatures that are hovering around freezing rather than being in the upper 20s (degrees Celsius, or the low to mid 80s for those of you still using Fahrenheit). Still, Toronto is positively balmy compared to Gale Crater, where temperatures usually range between minus 80°C and minus 20°C (or minus 110°F to minus 5°F) during this part of the year. These cold temperatures and their associated higher demands on the rover’s available power for heating are continuing to motivate many of the decisions that we make during planning.

We received the double good news this morning that the weekend’s drive completed successfully, including the mid-drive imaging of the other side of “Humber Park” that Michelle mentioned in Friday’s blog, and that our estimates of the weekend plan’s power consumption ended up being a little conservative. So we started planning exactly where we wanted to be, and with more power to play around with than we had expected. Yay!

The weekend’s drive left us parked in front of some rocks with excellent layering and interesting ripples that we really wanted to get a closer look at with MAHLI. (See the cover image for a look at these rocks as seen by Navcam.) Sadly, we also ended up parked in such a way that presented a slip hazard if the arm was unstowed. As much as we would have loved to get close-up images of these rocks, we love keeping Curiosity’s arm safe even more, so we had to settle for a remote sensing-only plan instead.

Both the geology and mineralogy (GEO) and the environmental science (ENV) teams took full advantage of the extra power gifted to us today to create a plan packed full of remote sensing observations. Because we’re driving on the first sol of this two-sol plan, any “targeted” observations, i.e. those where we know exactly where we want to point the rover’s cameras, must take place before the drive. The first sol is thus packed full of Mastcam and ChemCam observations, starting with a 14×3 Mastcam mosaic of the area in front of us that’s outside of today’s workspace. Individual targets then get some Mastcam love with mosaics of various ripple and layering features at “Verdugo Peak,” “Silver Moccasin Trail,” and “Jones Peak.” Mastcam and ChemCam also team up on a LIBS target, “Trancas Canyon,” and some more long-distance mosaics of Gould Mesa, a feature about 100 meters away from us (about 328 feet) that we’ll be driving to the south of as we continue to head toward the “boxwork” structures.

After a drive, there often aren’t many activities scheduled other than the imaging of our new location that we’ll need for the next planning day. However, in this plan ENV decided to take advantage of the fact that Navcam observations can take place at the same time that the rover is talking to one of the spacecraft that orbit Mars. This is a useful trick when power is tight as it allows us to do more science without adding additional awake time (since the rover needs to be awake anyway to communicate with the orbiters). Today, it’s being used to get some extra cloud observations right before sunset, a time that we don’t often get to observe. These observations include a zenith movie that looks straight up over the rover and a “phase function sky survey,” which takes a series of nine movies that form a dome around the rover to examine the properties of the clouds’ ice crystals. 

The second sol of this plan is much more relaxed, as post-drive sols often are because we don’t know exactly where we’ll be after a drive. Today, we’ve just got our usual ChemCam AEGIS activity, followed by a pair of Navcam cloud and cloud shadow movies to measure the altitude of clouds over Gale. As always, we’ve also got our usual set of REMS, RAD, and DAN activities throughout this plan.

Share

Details

Last Updated
Mar 20, 2025

Related Terms



from NASA https://ift.tt/E7AdcQJ

Shocking Spherules!

Mission Overview Rover Components Mars Rock Samples Where is Perseverance? Ingenuity Mars Helicopter Mission Updates Over...