Planets rule the a.m., and what’s that bright light?
Saturn and Mars meet up with the Moon, Jupiter returns at dawn, and tips for identifying some common objects seen in the sky.
Highlights
All month – All the planetary action continues to be in the morning sky, with Saturn and Mars rising in the early morning hours. They are joined later in the month by Jupiter.
June 2 – In the hour before sunrise, reddish Mars hangs just beneath the crescent Moon. Find the pair low in the east with Saturn lurking nearby, toward the south.
June 3 – The crescent Moon sits beneath Mars in morning twilight. Look for them low in the eastern sky.
June 6 – New moon
June 21 – Full moon
June 24 – Jupiter is now visible low in the east before sunrise. Look for the bright planet around 10 degrees above the horizon this final week of June, forming a line with Mars and Saturn that stretches toward the south.
June 27 – Look for the Moon rising in the east with Saturn around midnight. By dawn this morning, you’ll find them high in the southern sky. They appear super close together – close enough to appear in the same field of view through binoculars.
“Planet Parade” note: Some online sources have shared excitement about a “parade of planets” visible in the morning sky in early June (June 3 in particular). In reality, only two of the six planets supposedly on display (Saturn and Mars) will actually be visible. In early June, Jupiter and Mercury will be at or below the horizon in morning twilight and not visible; Uranus and Neptune are far too faint to see without a telescope, especially as the morning sky brightens. The closest thing to a planet parade will be June 29, when Saturn, the Moon, Mars, and Jupiter will line up across the morning sky. This arrangement persists into July, and we’ll talk more about that lineup in the next “What’s Up” video.
Sky chart showing the planets’ Saturn, Mars, and Jupiter forming a diagonal line across the morning sky in late June.
Transcript
What’s Up for June? Saturn and Mars meet up with the Moon, Jupiter returns at dawn, and tips for identifying some common objects seen in the sky.
On June 2nd in the hour before sunrise, reddish Mars hangs beneath the crescent Moon. Find the pair low in the east with Saturn lurking nearby. The following morning, on June 3rd, the Moon has moved so that it sits beneath Mars.
During the last week of June, giant Jupiter re-emerges as a morning planet, after passing behind the Sun, from our point of view on Earth, over the past couple of months. By June 24th, you can find it about 10 degrees above the horizon as the morning sky begins to brighten. It climbs a little higher each morning after that as July approaches.
Then on June 27th, look for the Moon with Saturn. The pair rise around midnight, and by dawn you’ll find them high in the southern sky. They appear super close together this morning – close enough to appear in the same field of view through binoculars.
Sky chart showing the pre-dawn sky on June 3, with Saturn, Mars, and the crescent Moon.
NASA/JPL-Caltech
When you spot bright or moving objects in the night sky, it might not be immediately clear what you’re looking at. Is that a planet, or just a bright star? Is it a satellite, or maybe just an airplane? Here are a few quick tips on how to tell the difference.
First, there are five planets that are easily observed with the unaided eye. Of these, two planets – Venus and Jupiter – can sometimes appear incredibly bright, like shining beacons in the sky. The other planets are much less bright, but still generally shine as brightly as bright stars.
The big tipoff that you’re looking at a star and not a planet is that planets tend to shine steadily, whereas stars twinkle. Stars are so far away that they’re just points of light,
and ripples in our atmosphere easily distort them, causing the familiar flicker. The planets are relatively closeby, being here in our solar system. Through binoculars or a telescope, instead of a single point, planets show us a tiny disk or crescent that’s illuminated by the Sun. So even though they appear star-like to the eye, the light from a planet is coming from a slightly more spread-out area, making planets appear more constant in brightness. Both planets and stars rise in the east and set in the west, and they move very slowly across the sky during the night.
But what if you see an object that’s moving? Distant aircraft are usually pretty easy to identify, because they follow a slow, steady path that’s straight or gently curving. They have exterior lights that flash in a regular pattern, often including a red beacon.
Satellites tend to be most visible in the hour or so after dark or before dawn, when it’s night here on the surface, but the satellites are high enough in the sky to be illuminated by sunlight. They’re generally fainter than aircraft, and move in slow, very steady, very straight paths. They might briefly flare in brightness, but they don’t have lights that blink.
The International Space Station traces its path across the twilight sky over a California desert landscape.
NASA/Preston Dyches
The International Space Station is an exception, because it’s very bright, and is often visible for long enough to observe the curving path of its orbit. But it doesn’t have flashing lights you can see from the ground, and it does something else satellites do: Satellites often fade out of view as they travel into Earth’s shadow, or fade into view as they emerge. And occasionally you might see a train of satellites moving slowly and silently in formation.
One other sight that’s sometimes confusing is rocket launches that happen soon after sunset or before sunrise. Similar to spotting satellites, this is when it’s darker here on the ground, but launching rockets climb high enough to be illuminated by sunlight. When rockets launching at these times of day get really high in altitude, their exhaust can be brilliantly illuminated, and sometimes you might even see spiral or circular shapes that slowly grow and then dissipate, as a spent rocket stage empties its propellant into space.
With so much to see in the night sky, it’s helpful to be familiar with some of these common sights, so you can get on with your skywatching and investigate whatever mysteries and wonders you’re in search of.
Here are the phases of the Moon for June.
The phases of the Moon for June 2024.
NASA/JPL-Caltech
Stay up to date on NASA’s missions exploring the solar system and beyond at science.nasa.gov. I’m Preston Dyches from NASA’s Jet Propulsion Laboratory, and that’s What’s Up for this month.
NASA Releases New High-Quality, Near Real-Time Air Quality Data
Artist illustration of the satellite Intelsat 40e. NASA's TEMPO instrument launched into geostationary orbit 22,236 miles above Earth's equator in April 2023 as a payload on the satellite.
Credits:Maxar Technologies
NASA has made new data available that can provide air pollution observations at unprecedented resolutions – down to the scale of individual neighborhoods. The near real-time data comes from the agency’s TEMPO (Tropospheric Emissions: Monitoring of Pollution) instrument, which launched last year to improve life on Earth by revolutionizing the way scientists observe air quality from space. This new data is available from the Atmospheric Science Data Center at NASA’s Langley Research Center in Hampton, Virginia.
“TEMPO is one of NASA’s Earth observing instruments making giant leaps to improve life on our home planet,” said NASA Administrator Bill Nelson. “NASA and the Biden-Harris Administration are committed to addressing the climate crisis and making climate data more open and available to all. The air we breathe affects everyone, and this new data is revolutionizing the way we track air quality for the benefit of humanity.”
The TEMPO instrument measured elevated levels of nitrogen dioxide (NO2) from a number of different areas and emission sources throughout the daytime on March 28, 2024. Yellow, red, purple, and black clusters represent increased levels of pollutants from TEMPO’s data and show drift over time.
Credit: Trent Schindler/NASA’s Scientific Visualization Studio
The TEMPO mission gathers hourly daytime scans of the atmosphere over North America from the Atlantic Ocean to the Pacific Coast, and from Mexico City to central Canada. The instrument detects pollution by observing how sunlight is absorbed and scattered by gases and particles in the troposphere, the lowest layer of Earth’s atmosphere.
“All the pollutants that TEMPO is measuring cause health issues,” said Hazem Mahmoud, science lead at NASA Langley’s Atmospheric Science Data Center. “We have more than 500 early adopters using these datasets right away. We expect to see epidemiologists and health experts using this data in the near future. Researchers studying the respiratory system and the impact of these pollutants on people’s health will find TEMPO’s measurements invaluable.”
NO2 levels are elevated along major traffic corridors including I-35 in Texas with the highest levels between 9:00 a.m. and 12:00 p.m. Elevated NO2 levels are shown across cities including Houston, Dallas, and San Antonio, with the highest levels persisting across Houston from morning to evening.
Credit: Trent Schindler/NASA’s Scientific Visualization Studio
An early adopter program has allowed policymakers and other air quality stakeholders to understand the capabilities and benefits of TEMPO’s measurements. Since October 2023, the TEMPO calibration and validation team has been working to evaluate and improve TEMPO data products.
We have more than 500 early adopters that will be using these datasets right away.
hazem mahmoud
NASA Data Scientist
“Data gathered by TEMPO will play an important role in the scientific analysis of pollution,” said Xiong Liu, senior physicist at the Smithsonian Astrophysical Observatory and principal investigator for the mission. “For example, we will be able to conduct studies of rush hour pollution, linkages of diseases and health issues to acute exposure of air pollution, how air pollution disproportionately impacts underserved communities, the potential for improved air quality alerts, the effects of lightning on ozone, and the movement of pollution from forest fires and volcanoes.”
Measurements by TEMPO include air pollutants such as nitrogen dioxide, formaldehyde, and ground-level ozone.
High NO2 levels associated with prescribed burns are seen popping up across East Texas, Oklahoma, Louisiana, Arkansas, and Mississippi, beginning around 1:00 p.m. and extending into the evening. Elevated NO2 levels are visible in cities from El Paso to Memphis.
Credit: Trent Schindler/NASA’s Scientific Visualization Studio
“Poor air quality exacerbates pre-existing health issues, which leads to more hospitalizations,” said Jesse Bell, executive director at the University of Nebraska Medical Center’s Water, Climate, and Health Program. Bell is an early adopter of TEMPO’s data.
Bell noted that there is a lack of air quality data in rural areas since monitoring stations are often hundreds of miles apart. There is also an observable disparity in air quality from neighborhood to neighborhood.
“Low-income communities, on average, have poorer air quality than more affluent communities,” said Bell. “For example, we’ve conducted studies and found that in Douglas County, which surrounds Omaha, the eastern side of the county has higher rates of pediatric asthma hospitalizations. When we identify what populations are going to the hospital at a higher rate than others, it’s communities of color and people with indicators of poverty. Data gathered by TEMPO is going to be incredibly important because you can get better spatial and temporal resolution of air quality across places like Douglas County.”
Determining sources of air pollution can be difficult as smoke from wildfires or pollutants from industry and traffic congestion drift on winds. The TEMPO instrument will make it easier to trace the origin of some pollutants.
TEMPO observes the northerly transport of NO2 from the Permian basin, a large oil and natural gas producing area spanning parts of West Texas and southeastern New Mexico, with the highest levels measured during the morning over the basin. NO2 plumes from coal-fired power plants are visible in the rural areas far west and northwest of Houston and far east of Dallas between 8:00 a.m. and 2:00 p.m.
Credit: Trent Schindler/NASA’s Scientific Visualization Studio
“The National Park Service is using TEMPO data to gain new insight into emerging air quality issues at parks in southeast New Mexico,” explained National Park Service chemist, Barkley Sive. “Oil and gas emissions from the Permian Basin have affected air quality at Carlsbad Caverns and other parks and their surrounding communities. While pollution control strategies have successfully decreased ozone levels across most of the United States, the data helps us understand degrading air quality in the region.”
The TEMPO instrument was built by BAE Systems, Inc., Space & Mission Systems (formerly Ball Aerospace) and flies aboard the Intelsat 40e satellite built by Maxar Technologies. The TEMPO Ground System, including the Instrument Operations Center and the Science Data Processing Center, are operated by the Smithsonian Astrophysical Organization, part of the Center for Astrophysics | Harvard & Smithsonian.
Boeing’s CST-100 Starliner crew ship approaches the International Space Station on the company’s Orbital Flight Test-2 mission before automatically docking to the Harmony module’s forward port.
NASA will provide live coverage of prelaunch and launch activities for the agency’s Boeing Crew Flight Test, which will carry NASA astronauts Butch Wilmore and Suni Williams to and from the International Space Station.
Launch of the ULA (United Launch Alliance) Atlas V rocket and Boeing Starliner spacecraft is targeted for 12:25 p.m. EDT Saturday, June 1, from Space Launch Complex-41 at Cape Canaveral Space Force Station in Florida. Starliner will dock to the forward-facing port of the station’s Harmony module at approximately 1:50 p.m., Sunday, June 2.
Wilmore and Williams will remain at the space station for about a week to test the Starliner spacecraft and its subsystems before NASA works to complete final certification of the transportation system for rotational missions to the orbiting laboratory as part of the agency’s Commercial Crew Program.
NASA, Boeing, and ULA scrubbed the previous launch opportunity on May 6 due to a suspect oxygen relief valve on the Atlas V rocket’s Centaur second stage. Since, teams have removed and replaced the valve, and completed an assessment of Starliner’s performance and redundancy after discovering a small helium leak in the spacecraft’s service module.
As part of the helium leak investigation, NASA and Boeing conducted a follow-on propulsion system assessment to understand potential helium system impacts to some Starliner return scenarios. NASA also completed a Delta-Agency Flight Test Readiness Review on May 29 to evaluate all work performed and flight rationale before proceeding toward launch.
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the newsroom at NASA’s Kennedy Space Center in Florida no later than one hour before the start of the event at ksc-newsroom@mail.nasa.gov.
Launch coverage on NASA+ will end shortly after Starliner orbital insertion. NASA Television will provide continuous coverage leading up to docking and through hatch opening and welcome remarks.
2 p.m. – Postlaunch news conference with the following participants:
NASA Administrator Bill Nelson
Ken Bowersox, associate administrator, NASA’s Space Operations Mission Directorate
Steve Stich, manager, NASA’s Commercial Crew Program
Dana Weigel, manager, NASA’s International Space Station Program
Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
Media may ask questions in person and via phone. Limited auditorium space will be available for in-person participation. For the dial-in number and passcode, media should contact the Kennedy newsroom no later than three hours before the start of the event at ksc-newsroom@mail.nasa.gov.
NASA+ will resume coverage and NASA Television’s public channel will break from in-orbit coverage to carry the postlaunch news conference. Mission operational coverage will continue on NASA Television’s media channel and the agency’s website. Once the postlaunch news conference is complete, NASA+ coverage will end, and mission coverage will continue on both NASA channels.
1:50 p.m. – Targeted docking to the forward-facing port of the station’s Harmony module
3:35 p.m. – Hatch opening
3:55 p.m. – Welcome remarks
5 p.m. – Post-docking news conference at NASA’s Johnson Space Center with the following participants:
NASA Associate Administrator Jim Free
Steve Stich, manager, NASA’s Commercial Crew Program
Dana Weigel, manager, NASA’s International Space Station Program
Mark Nappi, vice president and program manager, Commercial Crew Program, Boeing
Coverage of the post-docking news conference will air live on NASA+, NASA Television, the NASA app, YouTube, and the agency’s website.
All times are estimates and could be adjusted based on operations after launch. Follow the space station blog for the most up-to-date operations information.
Audio Only Coverage
Audio only of the news conferences and launch coverage will be carried on the NASA “V” circuits, which may be accessed by dialing 321-867-1220, -1240 or -7135. On launch day, “mission audio,” countdown activities without NASA Television launch commentary, will be carried on 321-867-7135.
Launch audio also will be available on Launch Information Service and Amateur Television System’s VHF radio frequency 146.940 MHz and KSC Amateur Radio Club’s UHF radio frequency 444.925 MHz, FM mode, heard within Brevard County on the Space Coast.
Live Video Coverage Prior to Launch
NASA will provide a live video feed of Space Launch Complex-41 approximately 48 hours prior to the planned liftoff of the mission. Pending unlikely technical issues, the feed will be uninterrupted until the prelaunch broadcast begins on NASA Television, approximately four hours prior to launch. Once the feed is live, find it on NASA Kennedy’s YouTube: http://youtube.com/kscnewsroom.
NASA Website Launch Coverage
Launch day coverage of the mission will be available on the agency’swebsite. Coverage will include live streaming and blog updates beginning no earlier than 8:15 a.m., June 1, as the countdown milestones occur. On-demand streaming video and photos of the launch will be available shortly after liftoff.
For questions about countdown coverage, contact the Kennedy newsroom at 321-867-2468. Follow countdown coverage on the commercial crew or the Crew Flight Test blog.
Attend Launch Virtually
Members of the public can register to attend this launch virtually. NASA’s virtual guest program for this mission also includes curated launch resources, notifications about related opportunities or changes, and a stamp for the NASA virtual guest passport following launch.
Watch, Engage on Social Media
Let people know you’re following the mission on X, Facebook, and Instagram by using the hashtags #Starliner and #NASASocial. You can also stay connected by following and tagging these accounts:
Did you know NASA has a Spanish section called NASA en Espanol? Check out NASA en Espanol on X, Instagram, Facebook, and YouTube for additional mission coverage.
Para obtener información sobre cobertura en español en el Centro Espacial Kennedy o si desea solicitar entrevistas en español, comunÃquese con Antonia Jaramillo: 321-501-8425;antonia.jaramillobotero@nasa.gov.
NASA’s Commercial Crew Program has delivered on its goal of safe, reliable, and cost-effective transportation to and from the International Space Station from the United States through a partnership with American private industry. This partnership is changing the arc of human spaceflight history by opening access to low-Earth orbit and the International Space Station to more people, science, and commercial opportunities. The space station remains the springboard to NASA’s next great leap in space exploration, including future missions to the Moon and, eventually, to Mars.
For NASA’s launch blog and more information about the mission, visit:
Preparations for Next Moonwalk Simulations Underway (and Underwater)
The four CubeSate spacecraft that make up the Starling swarm have demonstrated success in autonomous operations, completing all key mission objectives.
After ten months in orbit, the Starling spacecraft swarm successfully demonstrated its primary mission’s key objectives, representing significant achievements in the capability of swarm configurations.
Swarms of satellites may one day be used in deep space exploration. An autonomous network of spacecraft could self-navigate, manage scientific experiments, and execute maneuvers to respond to environmental changes without the burden of significant communications delays between the swarm and Earth.
“The success of Starling’s initial mission represents a landmark achievement in the development of autonomous networks of small spacecraft,” said Roger Hunter, program manager for NASA’s Small Spacecraft Technology program at NASA’s Ames Research Center in California’s Silicon Valley. “The team has been very successful in achieving our objectives and adapting in the face of challenges.”
Sharing the Work
The Distributed Spacecraft Autonomy (DSA) experiment, flown onboard Starling, demonstrated the spacecraft swarm’s ability to optimize data collection across the swarm. The CubeSats analyzed Earth’s ionosphere by identifying interesting phenomena and reaching a consensus between each satellite on an approach for analysis.
By sharing observational work across a swarm, each spacecraft can “share the load” and observe different data or work together to provide deeper analysis, reducing human workload, and keeping the spacecraft working without the need for new commands sent from the ground.
The experiment’s success means Starling is the first swarm to autonomously distribute information and operations data between spacecraft to generate plans to work more efficiently, and the first demonstration of a fully distributed onboard reasoning system capable of reacting quickly to changes in scientific observations.
Communicating Across the Swarm
A swarm of spacecraft needs a network to communicate between each other. The Mobile Ad-hoc Network (MANET) experiment automatically established a network in space, allowing the swarm to relay commands and transfer data between one another and the ground, as well as share information about other experiments cooperatively.
The team successfully completed all the MANET experiment objectives, including demonstrating routing commands and data to one of the spacecraft having trouble with space to ground communications, a valuable benefit of a cooperative spacecraft swarm.
“The success of MANET demonstrates the robustness of a swarm,” said Howard Cannon, Starling project manager at NASA Ames. “For example, when the radio went down on one swarm spacecraft, we ‘side-loaded’ the spacecraft from another direction, sending commands, software updates, and other vital information to the spacecraft from another swarm member.”
Autonomous Swarm Navigation
Navigating and operating in relation to one another and the planet is an important part of forming a swarm of spacecraft. Starling Formation-Flying Optical Experiment, or StarFOX, uses star trackers to recognize a fellow swarm member, other satellite, or space debris from the background field of stars, then estimate each spacecraft’s position and velocity.
The experiment is the first-ever published demonstration of this type of swarm navigation, including the ability to track multiple members of a swarm simultaneously and the ability to share observations between the spacecraft, improving accuracy when determining each swarm member’s orbit.
Near the end of mission operations, the swarm was maneuvered into a passive safety ellipse, and in this formation, the StarFOX team was able to achieve a groundbreaking milestone, demonstrating the ability to autonomously estimate the swarm’s orbits using only inter-satellite measurements from the spacecraft star trackers.
Managing Swarm Maneuvers
The ability to plan and execute maneuvers with minimal human intervention is an important part of developing larger satellite swarms. Managing the trajectories and maneuvers of hundreds or thousands of spacecraft autonomously saves time and reduces complexity.
The Reconfiguration and Orbit Maintenance Experiments Onboard (ROMEO) system tests onboard maneuver planning and execution by estimating the spacecraft’s orbit and planning a maneuver to a new desired orbit.
The experiment team has successfully demonstrated the system’s ability to determine and plan a change in orbit and is working to refine the system to reduce propellant use and demonstrate executing the maneuvers. The team will continue to adapt and develop the system throughout Starling’s mission extension.
Swarming Together
Now that Starling’s primary mission objectives are complete, the team will embark on a mission extension known as Starling 1.5, testing space traffic coordination in partnership with SpaceX’s Starlink constellation, which also has autonomous maneuvering capabilities. The project will explore how constellations operated by different users can share information through a ground hub to avoid potential collisions.
“Starling’s partnership with SpaceX is the next step in operating large networks of spacecraft and understanding how two autonomously maneuvering systems can safely operate in proximity to each other. As the number of operational spacecraft increases each year, we must learn how to manage orbital traffic,” said Hunter.
NASA’s Small Spacecraft Technology program, based at Ames and within NASA’s Space Technology Mission Directorate (STMD), funds and manages the Starling mission. Blue Canyon Technologies designed and manufactured the spacecraft buses and is providing mission operations support. Rocket Lab USA, Inc. provided launch and integration services. Partners supporting Starling’s payload experiments have included Stanford University’s Space Rendezvous Lab in Stanford, California, York Space Systems (formerly Emergent Space Technologies) of Denver, Colorado, CesiumAstro of Austin, Texas, L3Harris Technologies, Inc., of Melbourne, Florida. Funding support for the DSA experiment was provided by NASA’s Game Changing Development program within STMD.Partners supporting Starling’s mission extension include SpaceX of Hawthorne, California, NASA’s Conjunction Assessment Risk Analysis (CARA) program, and the Department of Commerce. SpaceX manages the Starlink satellite constellation and the Collision Avoidance ground system.
A new project provides special 3D “experiences” on Instagram using data from NASA’s Chandra X-ray Observatory and other telescopes through augmented reality (AR), allowing users to travel virtually through objects in space. These new experiences of astronomical objects – including the debris fields of exploded stars – are being released to help celebrate the 25th anniversary of operations from Chandra, NASA’s flagship X-ray telescope.
In recent years, Instagram experiences (previously referred to as filters) of NASA mission control, the International Space Station, and the Perseverance Rover on Mars have allowed participants to virtually explore what NASA does. This new set of Chandra Instagram filters joins this space-themed collection.
These four images showcase the 2D captured views of the cosmic objects included in the new augmented reality 3D release. Presenting multiwavelength images of the Vela Pulsar, Tycho’s Supernova Remnant, Helix Nebula, and Cat’s Eye Nebula that include Chandra X-ray data as well as optical data in each, and for the Helix, additional infrared and ultraviolet data.
“We are excited to bring data from the universe down to earth in this way,” said Kimberly Arcand, visualization and emerging technology scientist at the Chandra X-ray Center. “By enabling people to access cosmic data on their phones and through AR, it brings Chandra’s amazing discoveries literally right to your fingertips.”
The new Instagram experiences are created from 3D models based on data collected by Chandra and other telescopes along with mathematical models. Traditionally, it has been very difficult to gather 3D data of objects in our galaxy due to their two-dimensional projection on the sky. New instruments and techniques, however, have helped allowed astronomers in recent years to construct more data-driven models of what these distant objects look like in three dimensions.
These advancements in astronomy have paralleled the explosion of opportunities in virtual, extended, and augmented reality. Such technologies provide virtual digital experiences, which now extend beyond Earth and into the cosmos. This new set of Chandra Instagram experiences was made possible by a collaboration including NASA, the Smithsonian Institution, and students and researchers at Brown University.
These Instagram experiences also include data sonifications of the celestial objects. Sonification is the process of translating data into sounds and notes so users can hear representations of the data, an accessibility project the Chandra team has led for the past four years.
“These Chandra Instagram experiences are another way to share these cosmic data with the public,” said Arcand. “We are hoping this helps reach new audiences, especially those who like to get their information through social media.”
The objects in the new Chandra Instagram experience collection include the Tycho supernova remnant, the Vela Pulsar, the Helix Nebula, the Cat’s Eye Nebula, and the Chandra spacecraft. The 3D models of the first three objects were done in conjunction with Sal Orlando, an astrophysicist at Italy’s National Institute for Astrophysics (INAF) in Palmero. The Cat’s Eye Nebula was created with data from Ryan Clairmont, physics researcher and undergraduate at Stanford University. Arcand worked with Brown’s Tom Sgouros and his team, research assistant Alexander Dupuis and undergraduate Healey Koch, on the Chandra Instagram filters.
The experiences include text that explains what users are looking at. The effects are free andavailable on Instagram on mobile devices for at least six months, and some will remain viewable in perpetuity on the Smithsonian’s Voyager 3D website.
“There is a lot of rich and beautiful data associated with these models that Healey and I looked to bring in, which we did by creating the textures on the models as well as programming visual effects for displaying them in AR,” said Dupuis. Add links?
NASA’s Marshall Space Flight Center manages the Chandra program. The Smithsonian Astrophysical Observatory’s Chandra X-ray Center controls science from Cambridge Massachusetts and flight operations from Burlington, Massachusetts. The Chandra X-ray Center is headquartered at the Smithsonian Astrophysical Observatory, which is part of the Center for Astrophysics | Harvard & Smithsonian.
Photo 1. Photo of some of the in-person participants of the July 2023 ESIP Meeting. ESIP celebrated its twenty-fifth anniversary in 2023. Founded as a knowledge sharing space, the nonprofit has grown as a collaborative data hub.
Photo credit: Homer Horowitz/ Homer Horowitz Photography
Introduction
In 2023, the Earth Science Information Partners (ESIP) community celebrated 25 years since the nonprofit’s founding. Serving as a home for Earth science data and computing professionals, ESIP has evolved alongside the tools and vast expansion of Earth science data available now.
Building on the deep roots of collaboration that ground ESIP and honoring the 2023 Year of Open Science, the 2023 July ESIP Meeting’s theme focused on “Opening Doors to Open Science.” Open science is a collaborative culture enabled by technology that empowers the open sharing of data, information, and knowledge within the scientific community and the wider public to accelerate scientific research and understanding. This definition of open science comes from the 2021 article on the topic published in Earth and Space Science. (To learn more about how open science is being implemented within the context of NASA’s Earth Science Division – see Open Source Science: The NASA Earth Science Perspective, in the September–October 2021 issue of The Earth Observer [Volume 33, Issue 5, pp. 5–9, 11].)
Participants from around the world gathered July 18–21, 2023, in Burlington, VT to explore this theme. One of the strengths of the ESIP community is how it brings people together from government agencies, academia, and industry to work toward common goals. Altogether, nearly 400 attendees from nearly as many institutions, spanning many technical domains and career stages, gathered for the 4-day meeting, which featured a hybrid format that allowed for both in-person participation and virtual access to all plenaries and breakout sessions. Some of the in-person attendees are shown in Photo 1.
This article begins with a brief section on the history and purpose of ESIP followed by a summary of the highlights from each day of the July 2023 meeting.
History and Purpose of ESIP
ESIP was created in response to a National Research Council (NRC) review of the Earth Observing System Data and Information System (EOSDIS). (To learn more about EOSDIS, see Earth Science Data Operations: Acquiring, Distributing, and Delivering NASA Data for the Benefit of Society, in the March–April 2017 issue of The Earth Observer [Volume 29, Issue 2, pp. 4–18].) As NASA’s first Earth Observing System (EOS) missions were launching or preparing to launch, the NRC called on NASA to develop a new, distributed structure that would be operated and managed by the Earth science community and would include observation and research, application, and education data.
ESIP began with 24 NASA-funded partners, whose purpose was to experiment with and evolve methods to make Earth science data easy to preserve, locate, access, and use by a broad community encompassing research, education, and commercial interests. NASA adopted a deliberate and incremental approach in developing ESIP by starting with a limited set of prototype projects called ESIPs, representing both the research and applications development communities. These working prototype ESIP projects were joined by nine NASA distributed active archive centers (DAACs) to form the core of what was then known as the Federation of ESIPs and were responsible for creating its governing structures and the collaborative community it is today.
Although it started as a federation of partners connected due to a NASA mandate, ESIP has grown into an organization of organizations — and its membership has increased exponentially and diversified significantly. Today, there are more than 170 partner organizations – with room to grow. ESIP holds twice-annual meetings, which have run nonstop since 1998, and all past meeting material is available online. (To see an example of topics discussed at an early ESIP Federation meeting, see Meeting of the Federation of Earth Science Information Partners in the September–October 2001 issue of The Earth Observer [Volume 13, Issue 5, pp. 19–20, 26].)
ESIP also currently supports about 30 collaboration areas, which include 11 standing committees and numerous smaller clusters, or working groups. These committees and clusters conduct business both during and especially between meetings. ESIP also started the ESIP Lab, a microfunding initiative that supports learning objectives alongside technical skill-building. The establishment of an ESIP Community Fellows program has carved out a stronger foothold for early career professionals while the Awards, Endorsement, and programs offers knowledge sharing and recognition at all career stages.
ESIP still brings people together to work on complex Earth science issues — an important task that has not changed in over 25 years — but clearly the world is not the same as it was in 1998 when ESIP was established. This holds true for the hardware, software, remote sensing tools, and computing resources that have changed along with the people and communities who use them. In recognition of this, ESIP has developed a new mission and vision statements, and a new list of core values. A key moment in the 2023 July ESIP meeting (reported on below) was the revelation of these new statements, which were then refined during the meeting and voted on by the Board on July 17, 2023 — see ESIP Vision, Mission, and Core Value Statements below.
ESIP Vision and Mission Statements and Core Values
Vision. We envision a world where data-driven solutions are a reality for all by making Earth science data actionable by all who need them anytime, anywhere.
Mission. To empower innovative use and stewardship of Earth science data to solve our planet’s greatest challenges.
Core Values. Integrity, inclusiveness, collaboration, openness, and curiosity.
The new vision statement was intentionally worded to acknowledge how much power is at the fingertips of all data users. The new mission statement honors the depth of knowledge that is required to make data-driven decisions. Much like open science itself, there is a productive tension between wanting to make data as easy to use as possible while upholding the rigor of scientific standards.
All ESIP collaborations are open to everyone, whether an individual’s home institution is an ESIP partner or not.
Overview of the 2023 July ESIP Meeting
The 2023 July ESIP Meeting showcased how the attitudes, behaviors, connections, engagement, and responses of people to the natural environment as well as to agricultural and food systems – known as human dimensions – inform the ways the community tackles technical challenges and how important it is to gather, work together, and find inspiration. Summary highlights from the meeting follow – organized by day. All the meeting sessions were recorded and are available publicly through the ESIP YouTube channel. The reader is referred to these recordings to learn more about the topics mentioned here.
The 2023 July ESIP meeting brought together 366 attendees – including 120 first-time participants. Through 4 plenaries and 44 breakout sessions, more than 100 organizers and speakers addressed the latest updates in Earth science data. Through the lens of open science, the community considered both the impact of the past 25 years of ESIP as well as how to move forward into the next quarter century.
Opening Doors – and Knocking Down Barriers – to Open Science
Throughout its history, ESIP meetings have brought together the most innovative thinkers and leaders around Earth observation data, forming a community dedicated to making Earth observations more discoverable, accessible, and useful to researchers, practitioners, policy makers, and the public. Openness is simply how work is done in ESIP.
Many participants are drawn to ESIP’s approach, because they find roadblocks to open collaboration and innovation elsewhere. While the ESIP community values the transparency and accountability that is fundamental to open science processes, ESIP participants also recognize the challenges in implementing those practices more broadly.
The 2023 July meeting was an excellent example. The “Opening Doors to Open Science” theme provided a space for participants to talk honestly about the institutional inertia, lack of incentives, and unintended consequences that hinder the open science approach. Often, the barriers are specific to particular domains, organizations, or roles. The ESIP meeting content explored such challenges – and solutions – for researchers, agencies, repositories, data managers, software developers, curriculum designers, and many other groups.
Daniel Segessenman [ESIP Community Fellow] explains his poster at the Research Showcase in Burlington, VT.
Photo credit: Homer Horowitz
DAY ONE
Susan Shingledecker [ESIP—Executive Director] gave the opening remarks and rallied the audience with interactive activities codesigned with Charley Haley [Way Foragers Consulting]. As a collaborative space, ESIP often breaks the norm of lecture-and-listen modes. The discussion and audience-driven talking points helped the community frame the week’s explorations of open science in Earth science data and computing.
Ken Casey [NOAA, National Center for Environmental Information (NCEI)—Deputy Chief of Data Stewardship and ESIP President 2021–2023] shared ESIP’s new mission, vision, and core values.
Kari Jordan [The Carpentries—Chief Executive Officer (CEO)] addressed the importance of authentic diversity and inclusion as a key function of open science. While she laid out systemic issues and barriers, her presentation focused mostly on action and solutions. She advised the ESIP community to use the organization’s core values and mission to continue opening doors to communities that have been historically left out of Science, Technology, Engineering, and Math (STEM) careers, leadership, and tech development.
The rest of the day was filled with rich, deep dives into many Earth science data and computing topics. Notable highlights include the hands-on, knowledge-sharing sessions led by the ESIP Cloud Computing Cluster, chaired by Aimee Barciauskas [Development Seed]. The sessions – from kerchunk tutorials to overviews of geospatial packages for the Python programming language, to lightning talks where speakers gave walkthroughs of tools used for cloud computing applications (e.g. GeoZarr, a geospatial extension to the Zarr specification for processing multidimensional arrays, or tensors, and storing and manipulating them on the cloud, and JupyterHub) – were often standing room only.
In addition to exploring technical tools, another breakout session motif centered around discussions on engaging stakeholders. One session featured Lesley-Ann Dupigny-Giroux [University of Vermont—State Climatologist], who spoke about climate preparedness for small communities, which was particularly relevant in light of the record-setting flooding that had taken place in Vermont just prior to the meeting. In another session, a team from NASA, including Grace Llewellyn [NASA/Jet Propulsion Laboratory—Software Engineer], Stephanie Schollaert Uz [NASA’s Goddard Space Flight Center (GSFC)—Applied Sciences Manager], and Jennifer Wei [GSFC—Scientist] alongside their collaborators Robert Gradeck [University of Pittsburgh], Mukul Sonwalkar [George Mason University], and Michiaki Tatsubori [IBM Research– Tokyo—Senior Technical Staff Member and Manager], focused on broader collaborations for natural disaster response. Several other sessions focused on specific end users in data centers, repositories, and universities.
DAY TWO
The second day of ESIP’s in-person meetings was nicknamed “Workshop Wednesday.” The day began with the ESIP Lab Plenary, followed by longer, in-depth sessions, and capped with the crowd-favorite Research Showcase Poster and Demo Reception.
Annie Burgess [ESIP—ESIPLab Director] gave the opening remarks and welcomed Corine Farewell [University of Vermont Innovations] to share her perspective on open science and technology transfer. Many in the research community see the two at odds fundamentally – which the audience made clear during the question-and-answer session – but Farewell laid out how interactions between open science and technology transfer can open opportunities to tailor licensing and rollouts and to help ensure technology is shared and supported.
Scott Reinhard [New York Times—Graphics Editor] took the stage and showed a room full of data managers, researchers, and program directors just how powerful their work can be with the right color choice and analytical filtering for an audience’s intuitive ease – see Figure. As a data visualization expert, Reinhard laid out his creative process for making award-winning news graphics, built with data from sources such as the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA’s Terra and Aqua platforms, and from instruments on NASA–U.S. Geological Survey Landsat missions. His advice during the question-and-answer session was that “less is more.” He said sharing data with public audiences should be about meeting their needs with clarity and succinctness, which means removing ancillary data that is often included in more dense, scientific presentations.
Figure. This graphic shows an example of work by Scott Reinhard [New York Times], who uses national and state geospatial data to create data visualizations for broad audiences. This map depicts the Dixie Fire in California in 2021 and is shown in a newsprint layout.
FigureCredit: Scott Reinhard/New York Times
The rest of the day continued with community-led breakout sessions that dove into additional tools like OPeNDAP, Amazon Web Service’s SageMaker, and open data resources in NASA’s Earth Science Division. The day also featured a special plated lunch with presentations from ESIP Award winners. Falkenberg Awardees Angelia Seyfferth [University of Delaware] and Raskin Scholar Alexis Garretson [Tufts University] each shared their domain specialties, Seyfferth focusing on arsenic uptake in crops and Garretson on the ecology of mouse genomes.
In the afternoon, the ESIP Education Committee led the annual ESIP Teacher’s Workshop. The organizers brought together about a dozen instructors keen to learn more about Earth science data tools for use in their middle and high school classrooms. Every participant was given a solar eclipse kit, including eclipse glasses and lesson plans – see Photo 2.
The evening concluded with the Research Showcase, which featured 47 posters and demonstrations. This is a particularly important event for early career meeting attendees, including the ESIP Community Fellows.
Photo 2. The ESIP Teacher Workshop took participants outside to test the solar eclipse gear they will use in their classrooms.
Photo credit: Homer Horowitz
DAY THREE
While there was no plenary to start the day, breakout sessions continued throughout the morning and late afternoon. Covering artificial intelligence (AI) tools for wildfires, the United Nations Decade of Ocean Science for Sustainable Development (2021–2030), and the Ocean Decade, these ESIP sessions spanned the interdisciplinary breadth of the community. While many attendees have different backgrounds and career paths, it is the technical challenges and opportunities that bring everyone together.
A longer scheduled lunch break transitioned to the unconference, a space for on-the-fly and emergent discussions. Organizers pitched their mini-session ideas, the audience voted, then everyone split into discussion groups similar to organized coffee-break hallway chats. ESIP meeting feedback data shows that in-person attendees value time to integrate new knowledge and network; a short unconference has proven to be a productive way to encourage this.
Another key networking opportunity was the FUNding Friday microfunding competition. On Thursday night, participants gathered at a local eatery to ideate, write, and even draw their projects, which would be pitched the next morning.
DAY FOUR
While short, the final day of the ESIP meeting proved to be lively. The morning started with the FUNding Friday pitches and voting followed by the closing plenary and Partner Assembly Business meeting. The day concluded with the final breakout sessions, which highlighted the human and social aspects of implementing open science in an Earth data context. From the process of public comments to AI and large-language models, the breakouts illustrated how entangled human challenges are with technical and environmental ones.
Conclusion
Celebrating the organization’s twenty-fifth anniversary at the 2023 July ESIP Meeting tapped into the community’s deep roots while highlighting how much the gathering has grown and evolved. Over the next 25 years, the Earth sciences and its technology will continue to expand – and so will the user base.
To help make Earth science data and its tools accessible, ESIP is committed to making its meetings as open as possible. All ESIP meeting content is made freely available on the ESIP YouTube channel with no time limit.
In general, the ESIP community is open to all people interested in making Earth science data accessible and actionable. The community gathers twice each year in January and July, but the ESIP Collaboration Areas host monthly gatherings throughout the year. Additionally, the ESIP Lab offers seed funding for pilot projects.
Readers who wish to stay informed on the latest from ESIP, Earth science data community events, jobs, and resources are invited to subscribe to the weekly ESIP Update. The next ESIP meeting will take place in July 2024; watch the ESIP website and other social media for more details.