Thursday, 29 February 2024

NASA Kennedy Seeks Nominations for 2024 Chroniclers Recognition

Members of media attend post launch news conference on Nov. 16, 2022, at NASA’s Kennedy Space Center in Florida
Members of the media attend a postlaunch news conference on Nov. 16, 2022, at NASA’s Kennedy Space Center in Florida, after launch of Artemis I at 1:47 a.m. EST from Kennedy’s Launch Complex 39B.
Photo credit: NASA/Kim Shiflett

NASA’s Kennedy Space Center in Florida is asking members of the news media to nominate former colleagues they deem worthy of honoring as a space program Chronicler.
The NASA Kennedy’s Chroniclers program recognizes broadcasters, journalists, authors, contractor public relations representatives, and agency public affairs officers who excelled at sharing news from the Florida spaceport about U.S. space exploration with the American public and the world.

Past honorees, whose names are displayed on The Chroniclers wall in the NASA Kennedy News Center, include Walter Cronkite of CBS News, two-time Pulitzer Prize winner, John Noble Wilford of the New York Times, and Reuters’ Mary Bubb, the first female reporter of the space program.
Nominees must have covered the U.S. space program primarily from the Kennedy Space Center for ten years or more and must no longer be working full-time in the field.
Each nomination must include a brief paragraph with rationale for its submission.

Email nominations to Serena Whitfield, Kennedy’s Office of Communication, at serena.g.whitfield@nasa.gov, using “Chroniclers Nomination” in the subject line. Deadline for submission is Sunday, March 10, 2024.

Awardees will be selected on or about March 14, 2024, by a committee of working broadcasters, journalists, public relations professionals, and present and former representatives of NASA Kennedy’s Office of Communication.

Selections will be announced on or about March 18, 2024.

Brass plates engraved with each awardee’s name will be added to The Chroniclers wall in the Kennedy Space Center News Center during a ceremony at 10 a.m. on Monday, May 6, 2024.

For a current list of KSC Chroniclers, visit: https://www.nasa.gov/the-chroniclers/



from NASA https://ift.tt/kKQWR8v

NASA’s SpaceX Crew-7 Completes Scientific Mission on Space Station

5 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

After months aboard the International Space Station, NASA’s SpaceX Crew-7 is returning to Earth. NASA astronaut Jasmin Moghbeli and Roscosmos cosmonaut Konstantin Borisov each completed their first spaceflight. JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa and ESA (European Space Agency) astronaut Andreas Mogensen each completed their second spaceflight.

During their time on the station, Crew-7 conducted science experiments and technology demonstrations to benefit people on Earth and prepare humans for future space missions. Here’s a look at some scientific milestones accomplished during their mission:

Download full-resolution versions of all photos in this article.

The Human Body in Space

ESA (European Space Agency) astronaut Andreas Mogensen processes blood samples for the Immunity Assay investigation, which monitors the impact of spaceflight on immune function. Prior to the experiment, scientists could only test the immune function before and after flight. Taking samples while on station provides scientists a clearer assessment of changes to the immune system during spaceflight.

: ESA astronaut Andreas Mogensen, wearing a black t-shirt and green pants, holds a syringe and smiles at the camera. He is holding a syringe with both gloved hands. Several vials are taped to the workbench in front of him.
NASA

Since physiological changes in microgravity can resemble how the human body ages on Earth, scientists can use the space station for age-related studies. NASA astronaut Jasmin Moghbeli collects cell samples inside the Life Science Glovebox for Space AGE, a study to understand how microgravity-induced age-like changes affect liver regeneration. Results could boost our understanding of aging and its effects on disease mechanisms.

Jasmine Moghbeli, wearing a red polo shirt and a headset, looks up and smiles at the camera. Her arms are inside a large, clear glovebox used to contain experiments. Equipment, laptops, cords, and lights cover the walls behind her.
NASA

JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa exercises with ARED Kinematics, a device that mimics forces generated when lifting free weights on Earth. The experiment assesses the current exercise programs on station to understand the most effective countermeasures to maintain muscle and bone strength.

Expedition 70 Flight Engineer and JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa works out on the Advanced Resisitive Exercise Device located (ARED) in the International Space Station's Tranquility module. The ARED is designed to mimic the inertial forces generated when lifting free weights on Earth.
NASA

Safe Water

ESA (European Space Agency) astronaut Andreas Mogensen works on ESA’s Aquamembrane-3 technology demonstration, which tests a special membrane to eliminate contaminants from wastewater. The membrane incorporates proteins called aquaporins, found in biological cells, and may be able to filter water using less energy. An aquaporin membrane-based system could improve water reclamation and reduce materials needed for future deep space missions.

Andreas Mogenson looks at the camera while working on an orange box with several tubes sticking out of it floating next to him.
NASA

NASA astronaut Jasmin Moghbeli prepares a water sample for DNA sequencing using the EHS BioMole Facility, a technology demonstration used to monitor microbes in water samples aboard a spacecraft. Future exploration missions will need to analyze water to ensure it is safe for crews to drink while far from Earth.

Jasmine Moghbeli holds a pipette used for water samples while working at a table. Her hair is floating around her head and a microphone floats by her ear.
NASA

Growing Food on Station

Tomato seedlings sprout in the space station’s Advanced Plant Habitat. At the beginning of Crew-7’s mission, Plant Habitat-03 wrapped up a months-long experiment that tests whether epigenetics are passed to subsequent generations. Epigenetic changes involve the addition of extra information to DNA, which regulates how genes turn on or off but does not change the sequence of the DNA itself. Crew-7 also grew tomatoes for Plant Habitat-06, which investigates how the plant immune functions adapt to spaceflight and how spaceflight affects plant production.

iss070e064263 (Jan. 12, 2024) -- Inside the Plant Habitat-06 facility, the early stages of seedling growth of wild-type tomatoes is visible. This specific investigation takes a look at the physiological and genetic responses to defense activation in wild-type and immune-deficient tomatoes during spaceflight.
NASA

BioNutrients completed five years of demonstrating technology to produce nutrients on demand aboard the space station. Since vitamins can degrade over time, the investigation used engineered microbes to test generating fresh nutrient supply for future long-duration missions.

Four small clear, cylindrical containers are attached by Velcro inside a black box. The containers each hold an orange bubbly liquid.
NASA

Outside the Station

JAXA (Japan Aerospace Exploration Agency) astronaut Satoshi Furukawa retrieves MISSE-17 hardware after the experiment spent six months outside the station. MISSE experiments expose materials and organisms to the space environment to analyze performance and durability. Crew-7 installed MISSE-18, which houses several materials including printed quantum dots arrays used to make a miniaturized and ultra-compact spectrometer.

Furukawa, wearing a gray shirt and khaki pants, smiles at the camera as he pulls hardware through the open cylindrical door of an airlock. The suitcase-sized hardware has a silver front, with blue boxes behind it.
NASA

CubeSats deployed from the space station are a lower-cost alternative to traditional satellites. Crew-7 deployed two CubeSats from Japanese schools, including BEAK CubeSat, which tests novel technologies for future nano-sized planetary probes and Clark sat-1, which transmits voice and imagery data to ground control stations on Earth.

The BEAK CubeSat is deployed from a small satellie deployer in the grips of the Japanese robotic arm attached to the Kibo laboratory module. BEAK, launched to the Interational Space Station aboard the SpaceX Dragon cargo spacecraft, was developed by The University of Tokyo in Kashiwa, Japan, and the Institute of Space and Astronautical Science in Sagamihara, Japan. Its primary mission is to test novel technologies for use in future nano-sized planetary probes.
NASA

Picture Perfect

Using handheld digital cameras, astronauts capture images of the Earth below. This imagery is used by researchers across disciplines from glaciology to ecology. A Crew-7 member captured this image of the Aladaghlar Mountains in northwest Iran, where the convergent boundary of the Arabia and Eurasia tectonic plates created folds in the landscape over millions of years.

A brown textured map of Northwest Iran. There are folds of mountains in an array of white, tan, and brown.
NASA

These bright red streaks above a thundercloud on Earth are a rare phenomenon known as red sprites. Red sprites happen above the clouds and are not easily studied from Earth. This image was captured on the space station with a high-speed camera for the Thor-Davis experiment. Imagery collected from the station is instrumental in studying the effects of thunderstorms and electrical activity on Earth’s climate and atmosphere.

A red streak shoots into the blackness of space. Below it is a blue ring around a bright white circle, with the top of a thundercloud visible below it.
ESA

Biology on Station

Recent spaceflight experiments found individual animal cells can sense the effects of gravity. Cell Gravisensing investigation from JAXA (Japanese Aerospace Exploration Agency) seeks to understand how cells can do this. JAXA astronaut Satoshi Furukawa uses a microscope to examine cells during spaceflight and document cell responses to microgravity. Understanding the mechanisms of cell gravity sensing could contribute to new drug development.

Satoshi Furukawa is wearing a yellow short-sleeved shirt, a mask, googles, and blue gloves as he works with a black microscope on a workbench.
NASA

NASA astronaut Jasmin Moghbeli works in the BioFabrication Facility (BFF), which bioprints organ-like tissues in microgravity. During the Crew-7 mission, BFF-Cardiac tested bioprinting and processing cardiac tissue samples. This experiment could help to advance technology to support the development of biological patches to replace damaged tissues and potentially entire muscles.

Moghbeli’s arms are inserted into large plastic gloves that are connected to a clear flexible plastic glovebag attached to the wall of the space station. Moghbeli is wearing a blue shirt and a headlamp. She is looking at the camera over her shoulder and smiling.
NASA

Special Delivery

Two commercial spacecraft visited during Crew-7’s time in space bringing critical science, hardware, and supplies to the station: SpaceX Dragon in November 2023 and Northop Grumman’s Cygnus in February 2024.

A white Dragon spacecraft approaches the station against the blackness of space. Its top hatch is open, revealing the docking ring, and jets of propulsion fuel are visible shooting from its top and bottom on the left side. A portion of the station is visible at the bottom left of the image.
NASA
Northrop Grumman's Cygnus space freighter approaches the International Space Station to deliver more than 8,200 pounds of science experiments, crew supplies, and station hardware for the Expedition 70 crew. Both spacecraft were orbiting 259 miles above the south Pacific Ocean at the time of this photograph.
NASA

Andrea Lloyd
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.



from NASA https://ift.tt/mAdQqfi

Mission Manager Update: All VIPER Flight Instruments Installed!

The VIPER team continues to push forward with the build of the flight rover that’ll go to the surface of the Moon. As of this writing, all of VIPER’s flight instruments are installed, and the rover is more than 80% built! This is a major accomplishment and shows the great progress being made by the dedicated VIPER team, who are excited to see the rover coming together.

What comes next – the confirmational tests of the rover – will strengthen our confidence in the rover’s ability to survive launch, landing, and the challenging environment of the lunar South Pole. 

For example, as we assemble and install various subsystems onto the rover, we also perform channelization tests. Channelization tests let us confirm that through our design and build of the rover system – from piece-parts to cable harnesses and connectors, and mechanical installation activities, and even through avionics software – the connections all work. Now, you might think, “Of course what we installed should work!” but it’s important to remember how complicated these space systems are (and planetary rover systems in particular). 

An example of an upcoming channelization test for VIPER is to command the flight vehicle’s high gain antenna to move in a particular way: Does it actually move in the correct direction and to the correct position? Sometimes we will perform even more complex tests, like sending a command to the NIRVSS instrument to take an image: Is the image taken successful? Is the field of view of the image correct? Did the image make its way into the rover’s avionics for downlink? We make these determinations now because we don’t want to discover any issues later in the assembly flow that could result in us needing to perform some disassembly to correct matters. 

So we test as we go, to decrease risk later when we’re performing whole-rover environmental tests. This way if the rover doesn’t work as expected after one of VIPER’s environmental tests, we know it once worked fine, and that can help us more quickly problem solve what might have gone wrong.

The pace in which we’ve been working through the build and subsystem checkouts has been blistering lately, and we’ve had a good run of successes. 

Go VIPER!

– Dan Andrews, VIPER Project Manager



from NASA https://ift.tt/E3zPtub

Wednesday, 28 February 2024

NASA, Intuitive Machines to Discuss Moon Mission, Science Successes

On Feb. 22, 2024, Intuitive Machines’ Odysseus lunar lander captures a wide field of view image of Schomberger crater on the Moon approximately 125 miles (200 km) uprange from the intended landing site, at approximately 6 miles (10 km) altitude.
Credit: Intuitive Machines

NASA and Intuitive Machines will co-host a televised news conference at 2 p.m. EST Wednesday, Feb. 28, from the agency’s Johnson Space Center in Houston to highlight the company’s first mission, known as IM-1.

The lander, called Odysseus, carried six NASA science instruments to the South Pole region of the Moon as part of the agency’s Commercial Lunar Payload Services (CLPS) initiative, and Artemis campaign. The IM-1 mission is the first U.S. soft landing on the Moon in more than 50 years, successfully landing on Feb. 22.

The news conference will air on NASA+, NASA Television, and the agency’s website

Learn how to stream NASA TV on a variety of platforms, including social media.

Participants in the news conference include:

  • Joel Kearns, deputy associate administrator, Exploration, Science Mission Directorate, NASA Headquarters in Washington
  • Sue Lederer, CLPS project scientist, NASA Johnson
  • Steve Altemus, chief executive officer and co-founder, Intuitive Machines
  • Tim Crain, chief technology officer and co-founder, Intuitive Machines

Media interested in participating in person must RSVP no later than 11 a.m. on Feb. 28. To participate by telephone, media must RSVP no later than one hour before the start of the news conference. Submit either request to the NASA Johnson newsroom at 281-483-5111 or jsccommu@mail.nasa.gov. The agency’s media accreditation policy is online.

For more information about the agency’s Commercial Lunar Payload Services initiative, visit:

https://www.nasa.gov/clps

-end-

Cheryl Warner / Karen Fox
Headquarters, Washington
202-358-1100
cheryl.m.warner@nasa.gov/ karen.c.fox@nasa.gov

Nilufar Ramji / Laura Sorto
Johnson Space Center, Houston
281-483-5111
nilufar.ramji@nasa.gov/ laura.g.sorto@nasa.gov

Josh Marshall
Intuitive Machines, Houston
jmarshall@intuitivemachines.com



from NASA https://ift.tt/AioNUC0

A Splash of Pink

Two roseate spoonbills stand at the edge of a pond. The birds are pink, with distinctive long, spoon-shaped bills and thin legs. The male (right) has a bright slash of red coloring above its wing. The water is gray and bordered by reed-like plants.
NASA

A pair of roseate spoonbills add a pop of color to this image taken Sept. 13, 2005, in the Merritt Island National Wildlife Refuge, northwest of Kennedy Space Center in Florida. Spoonbills like this female (left) and male duo inhabit areas of mangrove such as on the coasts of southern Florida and Texas. These birds feed on shrimps and fish in the shallow water, sweeping their bills from side to side.

This and other wildlife abound throughout Kennedy as it shares a boundary with the Wildlife Refuge, home to some of the nation’s rarest and most unusual species of wildlife. The wildlife refuge is a habitat for more than 310 species of birds, 25 mammals, 117 fishes and 65 amphibians and reptiles.

Image Credit: NASA



from NASA https://ift.tt/ZdboXM9

Tuesday, 27 February 2024

Groundbreaking Results from Space Station Science in 2023

Lee esta historia en español aquí.

The International Space Station is a microgravity research lab hosting groundbreaking technology demonstrations and scientific investigations. More than 3,700 investigations conducted to date have generated roughly 500 research articles published in scientific journals. In 2023, the orbiting lab hosted more than 500 investigations.

See more space station research achievements and findings in the Annual Highlights of Results publication, and read highlights of results published between October 2022 and October 2023 below:

A New Spin on Pulsars

A large white box covered on one side in multiple circular black sensors points out into space. One of the station’s large solar panels is visible behind it against the blackness.
A view of NICER, attached to the space station’s exterior multipurpose payload shelving unit.
NASA

Neutron stars, ultra-dense matter left behind when massive stars explode as supernovas, are also called pulsars because they spin and emit X-ray radiation in beams that sweep the sky like lighthouses. The Neutron star Interior Composition Explorer (NICER) collects this radiation to study the structure, dynamics, and energetics of pulsars. Researchers used NICER data to calculate rotations of six pulsars and update mathematical models of their spin properties. Precise measurements enhance the understanding of pulsars, including their production of gravitational waves, and help address fundamental questions about matter and gravity.

Learning from Lightning

A long white robotic arm extends up from the bottom of the image with “Canada” printed in large letters on its side and sensors showing on the end. Above the arm, ASIM has white protective coverings around blue instruments. Below is the blue Earth with some thin scattered clouds.
The space station’s robotic arm maneuvers the Atmosphere-Space Interactions Monitor, seen at the top of the image, for light testing.
NASA

Atmosphere-Space Interactions Monitor (ASIM) studies how upper-atmospheric electrical discharges generated by severe thunderstorms affect Earth’s atmosphere and climate. These events occur well above the altitudes of normal lightning and storm clouds. Using ASIM data, researchers reported the first detailed observations of  development of a of negative leader, or initiation of a flash, from in-cloud lightning. Understanding how thunderstorms disturb the high-altitude atmosphere could improve atmospheric models and climate and weather predictions.

Regenerating Tissue in Space

Tissue Regeneration-Bone Defect (Rodent Research-4 (CASIS)), sponsored by the ISS National Lab, examined wound healing mechanisms in microgravity. Researchers found that microgravity affected the fibrous and cellular components of skin tissue. Fibrous structures in connective tissue provide structure and protection for the body’s organs. This finding is an initial step to use connective tissue regeneration to treat disease and injuries for future space explorers.

Mighty Muscles in Microgravity

Installation of the Mouse Habitat Unit (MHU) in the station’s Cell Biology Experiment Facility.
NASA/JAXA

JAXA (Japan Aerospace Exploration Agency) developed the Multiple Artificial-gravity Research System (MARS), which generates artificial gravity in space. Three JAXA investigations, MHU-1, MHU-4, and MHU-5, used the artificial-gravity system to examine the effect on skeletal muscles from different gravitation loads – microgravity, lunar gravity (1/6 g), and Earth gravity (1 g). Results show that lunar gravity protects against loss of some muscle fibers but not others. Different gravitational levels may be needed to support muscle adaptation on future missions.

Better Ultrasound Images

Hoshide wears a blue shirt and black short. He holds a small white device, attached by a white cord to a control panel, against his thigh and looks at the camera. The wall in front of him is a jumble of cords, wires, and equipment.
JAXA astronaut Akihiko Hoshide uses the station’s ultrasound device to image the femoral artery in his right leg.
NASA

Vascular Echo, an investigation from CSA (Canadian Space Agency), examined changes in blood vessels and the heart during and after spaceflight using ultrasound and other measures. Researchers compared 2D ultrasound technology with a motorized 3D ultrasound and found that 3D is more accurate. Better measurements could help maintain crew health in space and quality of life for people on Earth.

This is Your Brain in Space

Pesquet is wearing a dark polo shirt with the ESA logo and a pair of light blue pants. He is facing the camera and holding on to a bar extending from a wall of the space station with his right hand. In his left hand is a tablet with a multi-colored image on it. There are ESA and French flags on the station wall behind him and laptops, equipment, and cords covering the wall to his left.
ESA astronaut Thomas Pesquet with a preflight scan of his brain for the Brain-DTI investigation.
ESA/NASA

The Brain-DTI investigation from ESA (European Space Agency) tested whether the brain adapts to weightlessness by using previously untapped connections between neurons. MRI scans of crew members before and after spaceflight demonstrate functional changes in specific brain regions, confirming the adaptability and plasticity of the brain under extreme conditions. This insight supports the development of ways to monitor brain adaptations and countermeasures to promote healthy brain function in space and for those with brain-related disorders on Earth.

Improving Solar Materials

The MISSE-FF is visible in the image center, blue and black panels on a large white structure. The station’s robotic arm extends from the top of the image and solar panels fill the background with the blackness of space behind them.
The MISSE-FF platform is used to test how exposure to space affects materials, including those used for solar power in space.
NASA

Metal halide perovskite (MHP) materials convert sunlight into electrical energy and show promise for use in thin-film solar cells in space due to low cost, high performance, suitability for in-space manufacturing, and defect and radiation tolerance. For Materials International Space Station Experiment-13-NASA (MISSE-13-NASA), which continues a series investigating how space affects various materials, researchers exposed perovskite thin films to space for ten months. Results confirmed their durability and stability in this environment. This finding could lead to improvements in MHP materials and devices for space applications such as solar panels.

Understanding Bubbles in Foams

A hand in a blue sterile glove holds a sample cell for FOAM, four clear tubes set into a black metal casing about the size of a wallet.
A sample cell for the FOAM investigation on the space station.
NASA

Wet foams are dispersions of gas bubbles in a liquid matrix. An ESA investigation, FSL Soft Matter Dynamics or FOAM, examines coarsening, a thermodynamic process where large bubbles grow at the expense of smaller ones. Researchers determined the coarsening rates for various types of foams and found close agreement with theoretical predictions. A better understanding of foam properties could help scientists improve these substances for a variety of uses, including firefighting and water treatment in space and making detergents, food, and medicine on Earth.

Answering Burning Questions

A sample of fabric made of cotton and fiberglass burns in this image illuminated by green LED lights. An orange flame covers the image from top to bottom and a black region to the right of the flame is the cotton in the sample beginning to heat and char. Bright specks to the left of the flame are from cotton that continues to smolder after the flame has passed.
A sample of composite cotton and fiberglass fabric burns during Saffire-IV.
NASA

Fire is a constant concern in space. The Saffire series of experiments studies flame conditions in microgravity using empty Cygnus resupply spacecraft that have undocked from the space station. Saffire-IV examined fire growth with different materials and conditions and showed that a technique called color pyrometry can determine the temperature of a spreading flame. The finding helps validate numerical models of flame properties in microgravity and provides insight into fire safety on future missions.

The Robot Hop

A green box-shaped Astrobee robot uses a grasping arm to grip a handrail attached to a wall of the space station then releases its grasp to toss itself tumbling forward.
An Astrobee robot performs a self-tossing maneuver on the space station.
NASA

Astrobatics tests robotic movement using hopping or self-toss maneuvers by the station’s Astrobee robots. In low gravity, robots could move faster, use less fuel, and cover otherwise impassable terrain with these maneuvers, expanding their orbital and planetary capabilities. Results verified the viability of the locomotion method and showed that it provides a greater range of distance. The work is a step toward autonomous robotic helpers in space and on other celestial bodies, potentially reducing the need to expose astronauts to risky environments.

Melissa Gaskill
International Space Station Program Research Office
Johnson Space Center

Search this database of scientific experiments to learn more about those mentioned above.



from NASA https://ift.tt/CtLxhZ3

Resultados científicos revolucionarios en la estación espacial de 2023

Read the article in English here.

La Estación Espacial Internacional (EEI) es un laboratorio de investigación en microgravedad que alberga innovadoras demostraciones de tecnología e investigaciones científicas. Las más de 3.700 investigaciones llevadas a cabo hasta la fecha han producido alrededor de 500 artículos publicados en revistas científicas. En 2023, este laboratorio orbital albergó más de 500 investigaciones.

Conoce más logros y hallazgos de las investigaciones en la estación espacial en la publicación Resultados anuales sobresalientes de la Estación Espacial Internacional (en inglés), y lee a continuación sobre los aspectos más destacados de los resultados publicados entre octubre de 2022 y octubre de 2023:

Nueva perspectiva sobre los púlsares

Una caja blanca grande, cubierta por un lado con numerosos sensores circulares negros, apunta hacia el espacio. Uno de los grandes paneles solares de la estación es visible detrás de esta caja contra la oscuridad del espacio.
Vista del telescopio NICER, sujeto a la plataforma externa de alojamiento de carga útil de la estación espacial.
NASA

Las estrellas de neutrones, la materia ultradensa que queda cuando las estrellas masivas explotan como supernovas, también son llamadas púlsares porque giran y emiten radiaciones de rayos X en forma de haces que barren el cielo como faros. El Explorador de la Composición Interior de las Estrellas de Neutrones (NICER, por sus siglas en inglés) recoge esta radiación para estudiar la estructura, la dinámica y la energía de los púlsares. Los investigadores utilizaron los datos de NICER para calcular la rotación de seis púlsares y actualizar los modelos matemáticos de las propiedades de su rotación. Las mediciones precisas mejoran nuestra comprensión de los púlsares, incluyendo su producción de ondas gravitacionales, y ayudan a abordar preguntas fundamentales acerca de la materia y la gravedad.

Aprender acerca de los relámpagos

Un largo brazo robótico blanco se extiende desde la parte inferior de la imagen, con el texto “Canadá” impreso a un lado en letras grandes y sensores que se muestran en su extremo. Por encima del brazo, el instrumento ASIM tiene cubiertas protectoras blancas alrededor de instrumentos azules. Abajo está la Tierra en azul con delgadas nubes dispersas.
El brazo robótico de la estación espacial maniobra el Monitor de Interacciones Atmósfera-Espacio, el cual se observa en la parte superior de esta imagen, para llevar a cabo pruebas con la luz.
NASA

El Monitor de Interacciones Atmósfera-Espacio (ASIM, por sus siglas en inglés) estudia de qué modo la atmósfera y el clima de la Tierra afectan las descargas eléctricas de la atmósfera superior que son producidas por tormentas eléctricas severas. Estos fenómenos ocurren muy por encima de las altitudes normales de los relámpagos y las nubes de tormenta. Utilizando los datos de ASIM, los investigadores realizaron las primeras observaciones detalladas del desarrollo de un líder negativo, o el inicio de un destello, a partir de un relámpago en una nube. Comprender de qué modo las tormentas eléctricas perturban la atmósfera a gran altitud podría mejorar los modelos atmosféricos y las predicciones climáticas y meteorológicas.

Regeneración de tejidos en el espacio

La investigación Regeneración de tejidos – Defectos óseos (Investigación en Roedores 4, Centro para el Avance de la Ciencia en el Espacio, o CASIS), patrocinada por el Laboratorio Nacional de la EEI, examinó los mecanismos de cicatrización de las heridas en microgravedad. Los investigadores descubrieron que la microgravedad afectaba a los componentes fibrosos y celulares del tejido cutáneo. Las estructuras fibrosas en el tejido conectivo proporcionan estructura y protección a los órganos del cuerpo. Este hallazgo es un paso inicial en la utilización de la regeneración del tejido conectivo para el tratamiento de enfermedades y lesiones en los futuros exploradores espaciales.

Músculos poderosos en microgravedad

Una puerta metálica abierta deja expuesta una figura circular parecida a un neumático con múltiples secciones en forma de cuña con pequeños paneles negros en su costado. Una mano cubierta con un guante sostiene una jeringa grande conectada por una manguera a una de las secciones.
Instalación de la Unidad de Hábitat de Ratones en el Centro Experimental de Biología Celular de la estación.
NASA/JAXA

La JAXA (Agencia Japonesa de Exploración Aeroespacial) desarrolló el Sistema Múltiple de Investigación de Gravedad Artificial (MARS, por sus siglas en inglés), el cual genera gravedad artificial en el espacio. Tres investigaciones de la JAXA, MHU-1, MHU-4 y MHU-5, emplearon el sistema de gravedad artificial para examinar el efecto en los músculos esqueléticos que producen diferentes cargas gravitatorias: microgravedad, gravedad lunar (1/6 g) y gravedad terrestre (1 g). Los resultados muestran que la gravedad lunar protege contra la pérdida de algunas fibras musculares, pero no de otras. Es posible que se necesiten diferentes niveles gravitacionales para sustentar la adaptación muscular en las misiones futuras.

Mejores imágenes de ultrasonido

Hoshide viste una camisa azul y un pantalón corto negro. Sostiene contra su muslo un pequeño dispositivo blanco, que está conectado por un cable blanco a un panel de control, y mira a la cámara. La pared frente a él es un revoltijo de cuerdas, alambres y equipos.
El astronauta de la JAXA Akihiko Hoshide utiliza el dispositivo de ultrasonido de la estación para obtener imágenes de la arteria femoral de su pierna derecha.
NASA

Eco vascular, una investigación de la CSA (Agencia Espacial Canadiense), examinó los cambios que se producen en los vasos sanguíneos y el corazón durante y después de los vuelos espaciales, utilizando ultrasonido y otros métodos de obtención de medidas. Los investigadores compararon la tecnología de ultrasonido 2D con un ultrasonido 3D motorizado, y descubrieron que el 3D es más preciso. Mejores mediciones podrían ayudar a mantener saludable a la tripulación en el espacio y la calidad de vida de la gente en la Tierra.

Este es tu cerebro en el espacio

Pesquet viste una camiseta polo de color oscuro con el logotipo de la ESA y pantalones celestes. Mira a la cámara y con la mano derecha se aferra a una barra que se extiende desde una pared de la estación espacial. En su mano izquierda tiene una tableta con una imagen colorida. En la pared de la estación que está detrás de él hay banderas de la ESA y de Francia, y la pared a su izquierda está cubierta por computadoras portátiles, equipos y cables.
El astronauta de la ESA Thomas Pesquet con un escáner cerebral previo al vuelo para la investigación Brain-DTI.
ESA/NASA

La investigación Brain-DTI de la ESA (Agencia Espacial Europea) llevó a cabo pruebas para saber si el cerebro se adapta a la ingravidez mediante el uso de conexiones entre neuronas previamente desaprovechadas. Las resonancias magnéticas de los miembros de la tripulación antes y después de los vuelos espaciales demuestran cambios funcionales en regiones específicas del cerebro, lo que confirma la adaptabilidad y plasticidad del cerebro en condiciones extremas. Esta información sustenta el desarrollo de formas de monitorear las adaptaciones cerebrales y de las contramedidas para promover un funcionamiento cerebral saludable en el espacio y para las personas con trastornos relacionados con el cerebro en la Tierra.

Mejores materiales para energía solar

La plataforma MISSE-FF es visible en el centro de la imagen: paneles azules y negros en una gran estructura blanca. El brazo robótico de la estación se extiende desde la parte superior de la imagen, y los paneles solares llenan el fondo contra la oscuridad del espacio detrás de ellos.
La plataforma MISSE-FF es utilizada en la realización de pruebas para saber de qué manera la exposición al espacio afecta a los materiales, incluyendo los utilizados para la producción de energía solar en el espacio.
NASA

Los materiales de perovskita de haluro metálico (PHM) convierten la luz solar en energía eléctrica y son prometedores para su uso en células solares de película delgada en el espacio debido a su bajo costo, alto rendimiento, idoneidad para la fabricación en el espacio y su tolerancia a defectos y radiación. Para el Experimento 13 de Materiales de la Estación Espacial Internacional de la NASA (MISSE-13-NASA), el cual continúa una serie de investigaciones sobre cómo el espacio afecta a diversos materiales, los investigadores expusieron películas delgadas de perovskita al espacio durante diez meses. Los resultados confirmaron su durabilidad y estabilidad en este entorno. Este hallazgo podría conducir a mejoras en los materiales y dispositivos de PHM para aplicaciones en el espacio tales como paneles solares.

Comprender las burbujas de las espumas

Una mano cubierta con un guante estéril azul sostiene un colector de muestras para el experimento FOAM: cuatro tubos transparentes colocados en un estuche de metal negro del tamaño de una billetera.
Un colector de muestras para la investigación FOAM a bordo de la estación espacial.
NASA

Las espumas húmedas son dispersiones de burbujas de gas en una base líquida. Una investigación llamada Dinámica de la Materia Blanda del Laboratorio de Ciencia de Fluidos, o FSL (FOAM, por sus siglas en inglés) de la ESA examina el engrosamiento, o agrandamiento, del grano, un proceso termodinámico en el cual las burbujas grandes crecen a expensas de las más pequeñas. Los investigadores determinaron las tasas de agrandamiento para diversos tipos de espumas y encontraron una estrecha concordancia con las predicciones teóricas. Una mejor comprensión de las propiedades de las espumas podría ayudar a los científicos a mejorar estas sustancias para una diversidad de usos, incluyendo el combate de incendios y el tratamiento del agua en el espacio, y la fabricación de detergentes, alimentos y medicamentos en la Tierra.

Respuesta a preguntas candentes

Una muestra de tela hecha de algodón y fibra de vidrio se quema en esta imagen iluminada por luces led de color verde. Una llama naranja cubre la imagen de arriba a abajo y una región negra a la derecha de la llama es el algodón de la muestra que comienza a calentarse y carbonizarse. Las manchas brillantes a la izquierda de la llama son del algodón que continúa ardiendo después de que la llama ha pasado.
Una muestra de tela compuesta de algodón y fibra de vidrio se quema durante el experimento Saffire-IV.
NASA

El fuego es una preocupación constante en el espacio. La serie de experimentos Saffire estudia las condiciones de las llamas en microgravedad utilizando la nave espacial de reabastecimiento Cygnus desocupada, que se ha desacoplado de la estación espacial. El Experimento Contra Incendios en Naves Espaciales IV (Saffire-IV, por sus siglas en inglés) examinó el desarrollo del fuego con diferentes materiales y condiciones, y mostró que una técnica llamada pirometría del color puede determinar la temperatura de una llama que se propaga. Este hallazgo ayuda a validar los modelos numéricos acerca de las propiedades de las llamas en microgravedad y proporciona información sobre la seguridad contra incendios en misiones futuras.

El salto de robot

Un robot Astrobee verde en forma de caja utiliza un brazo de agarre para sostenerse a un pasamanos unido a una pared de la estación espacial y luego se suelta para dar una voltereta hacia adelante.
Un robot Astrobee realiza una maniobra de autolanzamiento en la estación espacial.
NASA

La campaña de experimentos Astrobatics lleva a cabo a pruebas sobre el movimiento robótico mediante maniobras de salto o autolanzamiento de los robots Astrobee en la estación. En condiciones de baja gravedad, los robots podrían desplazarse más rápido, usar menos combustible y cubrir terrenos que de otro modo serían intransitables con estas maniobras, ampliando sus capacidades orbitales y planetarias. Los resultados verificaron la viabilidad de este método de locomoción y demostraron que proporciona un mayor rango de distancia. Este trabajo es un avance hacia la obtención de ayudantes robóticos autónomos en el espacio y en otros cuerpos celestes, lo que podría reducir la necesidad de exponer a los astronautas a entornos de riesgo.

Melissa Gaskill
Oficina de Investigaciones del Programa de la Estación Espacial Internacional
Centro Espacial Johnson

Busca en esta base de datos de experimentos científicos (en inglés) para obtener más información sobre los experimentos mencionados en este artículo.



from NASA https://ift.tt/7UntL4S

Station Science Top News: Dec. 20, 2024

A method for evaluating thermophysical properties of metal alloys Simulation of the solidification of metal alloys, a key step in certain i...