Saturday, 10 November 2018

NASA TV Coverage Set for Nov. 15 Cygnus Launch to International Space Station

NASA’s commercial partner Northrop Grumman is scheduled to launch its Antares rocket, carrying the Cygnus cargo spacecraft to the International Space Station, at 4:49 a.m. EST Wednesday, Nov. 15. The launch, as well as briefings preceding and following the launch, will air live on NASA Television and the agency’s website.

from NASA Breaking News https://ift.tt/2zHDKD7
via IFTTT

Thursday, 8 November 2018

NASA Looks to University Researchers for Innovative Space Tech Solutions

University-led research could transform the future of space exploration, from small spacecraft to “smart” systems for the Moon, Mars and beyond.

from NASA Breaking News https://ift.tt/2Dtz7ka
via IFTTT

NASA Announces Media Activities for New Horizons’ New Year’s Kuiper Belt Flyby

NASA is inviting media to cover the farthest spacecraft flyby in history on Jan. 1, 2019, when the agency’s New Horizons spacecraft encounters the Kuiper Belt object nicknamed Ultima Thule. Flyby events will take place from Dec. 29 to Jan. 4 at the base of New Horizons operations, Johns Hopkins University Applied Physics Laboratory (APL) in Laurel,

from NASA Breaking News https://ift.tt/2FdgkeD
via IFTTT

NASA Updates Media Invitation to Observe Quiet Supersonic Flight Series Operations

NASA has updated the date for the media day event at which journalists are invited to learn about the agency’s Quiet Supersonic Flights 2018 campaign.

from NASA Breaking News https://ift.tt/2Dsdkt3
via IFTTT

Wednesday, 7 November 2018

Cosmic Detective Work: Why We Care About Space Rocks

Highlights:

› Asteroids, comets and other small objects in space hold clues to our origins, but may also pose hazards.

› Small worlds likely delivered the ingredients of life to Earth.

› Several NASA missions are either on their way to these small worlds, or are in development.

The entire history of human existence is a tiny blip in our solar system's 4.5-billion-year history. No one was around to see planets forming and undergoing dramatic changes before settling in their present configuration. In order to understand what came before us -- before life on Earth and before Earth itself -- scientists need to hunt for clues to that mysterious distant past.

Those clues come in the form of asteroids, comets and other small objects. Like detectives sifting through forensic evidence, scientists carefully examine these small bodies for insights about our origins. They tell of a time when countless meteors and asteroids rained down on the planets, burned up in the Sun, shot out beyond the orbit of Neptune or collided with one another and shattered into smaller bodies. From distant, icy comets to the asteroid that ended the reign of the dinosaurs, each space rock contains clues to epic events that shaped the solar system as we know it today -- including life on Earth.

NASA's missions to study these "non-planets" help us understand how planets including Earth formed, locate hazards from incoming objects and think about the future of exploration. They have played key roles in our solar system's history, and reflect how it continues to change today.

"They might not have giant volcanoes, global oceans or dust storms, but small worlds could answer big questions we have about the origins of our solar system," said Lori Glaze, acting director for the Planetary Science Division at NASA Headquarters in Washington.

NASA has a long history of exploring small bodies, beginning with Galileo's 1991 flyby of asteroid Gaspra. The first spacecraft to orbit an asteroid, Near Earth Asteroid Rendezvous (NEAR) Shoemaker, also successfully landed on asteroid Eros in 2000 and took measurements that originally hadn't been planned. The Deep Impact mission drove a probe into Comet Tempel 1 in 2005 and prompted scientists to rethink where comets formed. More recent efforts have built on those successes and will continue to teach us more about our solar system. Here's an overview of what we can learn:

Ceres' Occator Crater in false colors
This representation of Ceres' Occator Crater in false colors shows differences in the dwarf planet's surface composition. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Larger view

Building Blocks of Planets

Our solar system as we know it today formed from grains of dust -- tiny particles of rock, metal and ice -- swirling in a disk around our infant Sun. Most of the material from this disk fell into the newborn star, but some bits avoided that fate and stuck together, growing into asteroids, comets and even planets. Lots of leftovers from that process have survived to this day. The growth of planets from smaller objects is one piece of our history that asteroids and comets can help us investigate.

"Asteroids, comets and other small bodies hold material from the solar system's birth. If we want to know where we come from, we must study these objects," Glaze said.

Two ancient fossils providing clues to this story are Vesta and Ceres, the largest bodies in the asteroid belt between Mars and Jupiter. NASA's Dawn spacecraft, which recently ended its mission, orbited both of them and showed definitively that they are not part of the regular "asteroid club." While many asteroids are loose collections of rubble, the interiors of Vesta and Ceres are layered, with the densest material at their cores. (In scientific terms, their interiors are said to be "differentiated.") This indicates both of these bodies were on their way to becoming planets, but their growth was stunted -- they never had enough material to get as big as the major planets.

But while Vesta is largely dry, Ceres is wet. It may have as much as 25 percent water, mostly bound up in minerals or ice, with the possibility of underground liquid. The presence of ammonia at Ceres is also interesting, because it typically requires cooler temperatures than Ceres' current location. This indicates the dwarf planet could have formed beyond Jupiter and migrated in, or at least incorporated materials that originated farther from the Sun. The mystery of Ceres' origins shows how complex planetary formation can be, and it underscores the complicated history of our solar system.

artist's concept depicts the spacecraft of NASA's Psyche mission
This artist's concept depicts the spacecraft of NASA's Psyche mission near the mission's target, the metal asteroid Psyche. Image Credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin
Larger view

Although we can indirectly study the deep interiors of the planets for clues about their origins, as NASA's InSight mission will do on Mars, it's impossible to drill down into the core of any sizeable object in space, including Earth. Nevertheless, a rare object called Psyche may offer the opportunity to explore a planet-like body's core without any digging. Asteroid Psyche appears to be the exposed iron-nickel core of a protoplanet -- a small world that formed early in our solar system's history but never reached planetary size. Like Vesta and Ceres, Psyche saw its path to planethood disrupted. NASA's Psyche mission, launching in 2022, will help tell the story of planet formation by studying this metal object in detail.

Artist's impression of NASA's New Horizons spacecraft
Artist's impression of NASA's New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits the Sun 1 billion miles (1.6 billion kilometers) beyond Pluto, on Jan. 1, 2019. Image Credit: NASA/JHUAPL/SwRI
Larger view

Farther afield, NASA's New Horizons spacecraft is currently on its way to a distant object called 2014 MU69, nicknamed "Ultima Thule" by the mission. One billion miles farther from the Sun than Pluto, MU69 is a resident of the Kuiper Belt, a region of ice-rich objects beyond the orbit of Neptune. Objects like MU69 may represent the most primitive, or unaltered, material that remains in the solar system. While the planets orbit in ellipses around the Sun, MU69 and many other Kuiper Belt objects have very circular orbits, suggesting they have not moved from their original paths in 4.5 billion years. These objects may represent the building blocks of Pluto and other distant icy worlds like it. New Horizons will make its closestapproach to MU69 on Jan. 1, 2019-- the farthest planetary flyby in history.

"Ultima Thule is incredibly scientifically valuable for understanding the origin of our solar system and its planets,"said Alan Stern, principal investigator of New Horizons, based at Southwest Research Institute in Boulder, Colorado. "It's ancient and pristine, andnotlike anything we've seen before."

Delivery of the Elements of Life

Small worlds are also likely responsible for seeding Earth with the ingredients for life. Studying how much water they have is evidence for how they helped seed life on Earth.

"Small bodies are the game changers. They participate in the slow and steady evolution of our solar system over time, and influence planetary atmospheres and opportunities for life. Earth is part of that story," said NASA's chief scientist Jim Green.

asteroid Bennu
This "super-resolution" view of asteroid Bennu was created using eight images obtained by NASA's OSIRIS-REx spacecraft on Oct. 29, 2018, from a distance of about 205 miles (330 kilometers). Image credit: NASA/Goddard/University of Arizona
Larger view

One example of an asteroid containing the building blocks of life is Bennu, the target of NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission. Bennu may be loaded with molecules of carbon and water, both of which are necessary for life as we know it. As Earth formed, and afterward, objects like Bennu rained down and delivered these materials to our planet. These objects did not have oceans themselves, but rather water molecules bound up in minerals. Up to 80 percent of Earth's water is thought to have come from small bodies like Bennu. By studying Bennu, we can better understand the kinds of objects that allowed a barren young Earth to blossom with life.

Bennu likely originated in the main asteroid belt between Mars and Jupiter, and it's thought to have survived a catastrophic collision that happened between 800 million and 2 billion years ago. Scientists think a big, carbon-rich asteroid shattered into thousands of pieces, and Bennu is one of the remnants. Rather than a solid object, Bennu is thought to be a "rubble pile" asteroid -- a loose collection of rocks stuck together through gravity and another force scientists call "cohesion." OSIRIS-REx, which will arrive at Bennu in early December 2018, after a 1.2-billion-mile (2-billion-kilometer) journey, and will bring back a sample of this intriguing object to Earth in a sample-return capsule in 2023.

The Japanese Hayabusa-2 mission is also looking at an asteroid from the same family of bodies thought to have delivered ingredients for life to Earth. Currently in orbit at asteroid Ryugu, with small hopping rovers on the surface, the mission will collect samples and return them in a capsule to Earth for analysis by the end of 2020. We will learn a lot comparing Bennu and Ryugu, and understanding the similarities and differences between their samples.

Tracers of Solar System Evolution

Most of the material that formed our solar system, including Earth, didn't live to tell the tale. It fell into the Sun or was ejected beyond the reaches of our most powerful telescopes; only a small fraction formed the planets. But there are some renegade remnants of the early days when the stuff of planets swirled with an uncertain fate around the Sun.

A particularly catastrophic time for the solar system was between 50 and 500 million years after the Sun formed. Jupiter and Saturn, our system's most massive giants, reorganized the objects around them as their gravity interacted with smaller worlds such as asteroids. Uranus and Neptune may have originated closer to the Sun and been kicked outward as Jupiter and Saturn moved around. Saturn, in fact, may have prevented Jupiter from "eating" some of the terrestrial planets, including Earth, as its gravity counteracted Jupiter's further movement toward the Sun.

Conceptual image of the Lucy mission
Conceptual image of the Lucy mission to the Trojan asteroids. Image credit: NASA/SwRI
Larger view

Swarms of asteroids called the Trojans could help sort out the details of that turbulent period. The Trojans comprise two clusters of small bodies that share Jupiter's orbit around the Sun, with one group ahead of Jupiter and one trailing behind. But some Trojans seem to be made of different materials than others, as indicated by their varying colors. Some are much redder than others and may have originated beyond the orbit of Neptune, while the grayer ones may have formed much closer to the Sun. The leading theory is that as Jupiter moved around long ago, these objects were corralled into Lagrange points -- places where the gravity of Jupiter and the Sun create holding areas where asteroids can be captured. The Trojans' diversity, scientists say, reflects Jupiter's journey to its present location. "They're the remnants of what was going on the last time Jupiter moved," said Hal Levison, researcher at Southwest Research Institute.

NASA's Lucy mission, launching in October 2021, will send a spacecraft to the Trojans for the first time, thoroughly investigating six Trojans (three asteroids in each swarm). For Levison, the mission's principal investigator, the spacecraft will test ideas he and colleagues have been working on for decades about Jupiter's reshaping of the solar system. "What would really be interesting is what we don't expect," he said.

Processes in an Evolving Solar System

After sundown, under the right conditions, you may notice scattered sunlight in the ecliptic plane, the region of the sky where the planets orbit. This is because sunlight is being scattered by dust left over from the collisions of small bodies such as comets and asteroids. Scientists call this phenomenon "zodiacal light," and it's an indication that our solar system is still active. Zodiacal dust around other stars indicates that they, too, may harbor active planetary systems.

Dust from small bodies has had an important role in our planet in particular. About 100 tons of meteoritic material and dust material fall on Earth every day. Some of it comes from comets, whose activity has direct implications for Earth's evolution. As comets approach the Sun and experience its heat, gases inside the comet bubble up and carry away dusty material from the comet -- including ingredients for life. NASA's Stardust spacecraft flew by Comet 81P/Wild and found that cometary dust contains amino acids, which are building blocks of life.

Comet 67P/Churyumov-Gerasimenko
This view shows Comet 67P/Churyumov-Gerasimenko as seen by the OSIRIS wide-angle camera on ESA's Rosetta spacecraft on September 29, 2016, when Rosetta was at an altitude of 14 miles (23 kilometers). Image Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Larger view

Occasional outbursts of gas and dust observed in comets indicate activity on or near their surfaces, such as landslides. The European Space Agency's Rosetta mission, which completed its exploration of Comet 67P/Churyumov-Gerasimenko in 2016, delivered unprecedented insights about cometary activity. Among the changes in the comet, the spacecraft observed a massive cliff collapse, a large crack get bigger and a boulder move. "We discovered that boulders the size of a large truck could be moved across the comet's surface a distance as long as one-and-a-half football fields," Ramy El-Maarry, a member of the U.S. Rosetta science team from the University of Colorado, Boulder, said in 2017.

Comets also influence planetary motion today. As Jupiter continues to fling comets outward, it moves inward ever so slightly because of the gravitational dance with the icy bodies. Neptune, meanwhile, throws comets inward and in turn gets a tiny outward push. Uranus and Saturn are also moving outward very slowly in this process.

"Right now we're talking about teeny amounts of motions because there's not a lot of mass left," Levison said.

Fun fact: The spacecraft that has seen the most comets is NASA's Solar & Heliospheric Observatory (SOHO), most famous for its study of the Sun. SOHO has seen the Sun "eat" thousands of comets, which means that these small worlds were spraying material in the inner part of the solar system on their journey to become the Sun's dinner.

animation portrays a comet
This animation portrays a comet as it approaches the inner solar system. Light from the Sun warms the comet's core, or nucleus, an object so small it cannot be seen at this scale. Image credit: NASA/JPL-Caltech
See animation

Hazards to Earth

Asteroids can still pose an impact hazard to the planets, including our own.

While the Trojans are stuck being Jupiter groupies, Bennu, the target of the OSIRIS-REx mission, is one of the most potentially hazardous asteroids to Earth that is currently known, even though its odds of colliding with Earth are still relatively small; scientists estimate Bennu has a 1?in?2,700 chance of impacting our planet during one of its close approaches to Earth in the late 22nd century. Right now, scientists can predict Bennu's path quite precisely through the year 2135, when the asteroid will make one of its close passes by Earth. Close observations by OSIRIS-REx will get an even tighter handle on Bennu's journey, and help scientists working on safeguarding our planet against hazardous asteroids to better understand what it would take to deflect one on an impact trajectory.

"We're developing a lot of technologies for operating with precision around these kinds of bodies, and targeting locations on their surfaces, as well as characterizing their overall physical and chemical properties. You would need this information if you wanted to design an asteroid deflection mission," said Dante Lauretta, principal investigator for the OSIRIS-REx mission, based at the University of Arizona in Tucson.

This animation shows how NASA's Double Asteroid Redirection Test (DART) would target and strike the smaller (left) element of the binary asteroid Didymos to demonstrate how a kinetic impact could potentially redirect an asteroid as part of the agency's planetary defense program.

Another upcoming mission that will test a technique for defending the planet from naturally occurring impact hazards is NASA's Double Asteroid Redirection Test (DART) mission, which will attempt to change a small asteroid's motion. How? Kinetic impact -- in other words, collide something with it, but in a more precise and controlled way than nature does it.

DART's target is Didymos, a binary asteroid composed of two objects orbiting each other. The larger body is about half a mile (800 meters) across, with a small moonlet that is less than one-tenth of a mile (150 meters) wide. An asteroid this size could result in widespread regional damage if one were to impact Earth. DART will deliberately crash itself into the moonlet to slightly change the small object's orbital speed. Telescopes on Earth will then measure this change in speed by observing the new period of time it takes the moonlet to complete an orbit around the main body, which is expected to be a change of less than a fraction of one percent. But even that small of change could be enough to make a predicted impactor miss Earth in some future impact scenario. The spacecraft, being built by the Johns Hopkins University Applied Physics Laboratory, is scheduled for launch in spring-summer 2021.

Didymos and Bennu are just two of the almost 19,000 known near-Earth asteroids. There are over 8,300 known near-Earth asteroids the size of the moonlet of Didymos and larger, but scientists estimate that about 25,000 asteroids in that size range exist in near-Earth space. The space telescope helping scientists discover and understand these kinds of objects, including potential hazards, is called NEOWISE (which stands for Near-Earth Object Wide-field Infrared Survey Explorer).

"For most asteroids, we know little about them except for their orbit and how bright they look. With NEOWISE, we can use the heat emitted from the objects to give us a better assessment of their sizes," said Amy Mainzer, principal investigator of NEOWISE, based at NASA's Jet Propulsion Laboratory. "That's important because asteroid impacts can pack quite a punch, and the amount of energy depends strongly on the size of the object."

artist's concept shows the Wide-field Infrared Survey Explorer
This artist's concept shows the Wide-field Infrared Survey Explorer, or WISE, spacecraft, in its orbit around Earth. In its NEOWISE mission it finds and characterizes asteroids. Image credit: NASA/JPL-Caltech
Larger view

Small Worlds as Pit Stops, Resources for Future Exploration

There are no gas stations in space yet, but scientists and engineers are already starting to think about how asteroids could one day serve as refueling stations for spacecraft on the way to farther-flung destinations. These small worlds might also help astronauts restock their supplies. For example, Bennu likely has water bound in clay minerals, which could perhaps one day be harvested for hydrating thirsty space travelers.

"In addition to science, the future will indeed be mining," Green said. "The materials in space will be used in space for further exploration."

How did metals get on asteroids? As they formed, asteroids and other small worlds collected heavy elements forged billions of years ago. Iron and nickel found in asteroids were produced by previous generations of stars and incorporated in the formation of our solar system.

These small bodies also contain heavier metals forged in stellar explosions called supernovae. The violent death of a star, which can lead to the creation of a black hole, spreads elements heavier than hydrogen and helium throughout the universe. These include metals like gold, silver and platinum, as well as oxygen, carbon and other elements we need for survival. Another kind of cataclysm -- the collision of supernova remnants called neutron stars -- can also create and spread heavy metals. In this way small bodies are also forensic evidence of the explosions or collisions of long-dead stars.

Because of big things, we now have a lot of very small things. And from small things, we get big clues about our past -- and possibly resources for our future. Exploring these objects is important, even if they aren't planets.

They are small worlds, after all.

News Media Contact

By Elizabeth Landau

2018-259



from News and Features https://ift.tt/2STHqu7
via IFTTT

European-Built Service Module Arrives in U.S. for First Orion Moon Mission

The powerhouse that will help NASA’s Orion spacecraft venture beyond the Moon is stateside. The European-built service module that will propel, power and cool during Orion flight to the Moon on Exploration Mission-1 arrived from Germany at the agency’s Kennedy Space Center in Florida on Tuesday to begin final outfitting, integration and testing wit

from NASA Breaking News https://ift.tt/2PNUJgO
via IFTTT

Tuesday, 6 November 2018

NASA Leads Urban Air Mobility ‘Grand Challenge’ Discussion with Industry

NASA officials welcomed more than 400 participants with a stake in the future of Urban Air Mobility (UAM) to Seattle last week for a two-day gathering in which the agency presented its plans to host a series of Grand Challenges for the UAM community.

from NASA Breaking News https://ift.tt/2Dtj7yG
via IFTTT

The Mars InSight Landing Site Is Just Plain Perfect


No doubt about it, NASA explores some of the most awe-inspiring locations in our solar system and beyond. Once seen, who can forget the majesty of astronaut Jim Irwin standing before the stark beauty of the Moon's Hadley Apennine mountain range, of the Hubble Space Telescope's gorgeous "Pillars of Creation" or Cassini's magnificent mosaic of Saturn?

Mars also plays a part in this visually compelling equation, with the high-definition imagery from the Curiosity rover of the ridges and rounded buttes at the base of Mount Sharp bringing to mind the majesty of the American Southwest. That said, Elysium Planitia - the site chosen for the Nov. 26 landing of NASA's InSight mission to Mars - will more than likely never be mentioned with those above because it is, well, plain.

"If Elysium Planitia were a salad, it would consist of romaine lettuce and kale - no dressing," said InSight principal investigator Bruce Banerdt at NASA's Jet Propulsion Laboratory in Pasadena, California. "If it were an ice cream, it would be vanilla."

Yes, the landing site of NASA's next Mars mission may very well look like a stadium parking lot, but that is the way the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) project likes it.

"Previous missions to the Red Planet have investigated its surface by studying its canyons, volcanoes, rocks and soil," said Banerdt. "But the signatures of the planet's formation processes can be found only by sensing and studying evidence buried far below the surface. It is InSight's job to study the deep interior of Mars, taking the planet's vital signs - its pulse, temperature and reflexes."

Taking those vital signs will help the InSight science team look back to a time when the rocky planets of the solar system formed. The investigations will depend on three instruments:

A six-sensor seismometer called the Seismic Experiment for Interior Structure (SEIS) will record seismic waves traveling through the interior structure of the planet. Studying seismic waves will tell scientists what might be creating the waves. (On Mars, scientists suspect that the culprits may be marsquakes or meteorites striking the surface.)

The mission's Heat Flow and Physical Properties Package (HP3) will burrow deeper than any other scoop, drill or probe on Mars before to gauge how much heat is flowing out of the planet. Its observations will shed light on whether Earth and Mars are made of the same stuff.

Finally, InSight's Rotation and Interior Structure Experiment (RISE) experiment will use the lander's radios to assess the wobble of Mars' rotation axis, providing information about the planet's core.

For InSight to do its work, the team needed a landing site that checked off several boxes, because as a three-legged lander - not a rover - InSight will remain wherever it touches down.

"Picking a good landing site on Mars is a lot like picking a good home: It's all about location, location, location," said Tom Hoffman, InSight project manager at JPL. "And for the first time ever, the evaluation for a Mars landing site had to consider what lay below the surface of Mars. We needed not just a safe place to land, but also a workspace that's penetrable by our 16-foot-long (5-meter) heat-flow probe."

The site also needs to be bright enough and warm enough to power the solar cells while keeping its electronics within temperature limits for an entire Martian year (26 Earth months).

So the team focused on a band around the equator, where the lander's solar array would have adequate sunlight to power its systems year-round. Finding an area that would be safe enough for InSight to land and then deploy its solar panels and instruments without obstructions took a little longer.

"The site has to be a low-enough elevation to have sufficient atmosphere above it for a safe landing, because the spacecraft will rely first on atmospheric friction with its heat shield and then on a parachute digging into Mars' tenuous atmosphere for a large portion of its deceleration," said Hoffman. "And after the chute has fallen away and the braking rockets have kicked in for final descent, there needs to be a flat expanse to land on - not too undulating and relatively free of rocks that could tip the tri-legged Mars lander."

Of 22 sites considered, only Elysium Planitia, Isidis Planitia and Valles Marineris met the basic engineering constraints. To grade the three remaining contenders, reconnaissance images from NASA's Mars orbiters were scoured and weather records searched. Eventually, Isidis Planitia and Valles Marineris were ruled out for being too rocky and windy.

That left the 81-mile long, 17-mile-wide (130-kilometer-long, 27-kilometer-wide) landing ellipse on the western edge of a flat, smooth expanse of lava plain.

"If you were a Martian coming to explore Earth's interior like we are exploring Mars' interior, it wouldn't matter if you put down in the middle of Kansas or the beaches of Oahu," said Banerdt. "While I'm looking forward to those first images from the surface, I am even more eager to see the first data sets revealing what is happening deep below our landing pads. The beauty of this mission is happening below the surface. Elysium Planitia is perfect."

After a 205-day journey that began on May 5, NASA's InSight mission will touch down on Mars on Nov. 26 a little before 3 p.m. EST (12 p.m. PST).Its solar panels will unfurl within a few hours of touchdown. Mission engineers and scientists will take their time assessing their "workspace" prior to deploying SEIS and HP3 on the surface - about three months after landing - and begin the science in earnest.

InSight was the 12th selection in NASA's series of Discovery-class missions. Created in 1992, the Discovery Program sponsors frequent, cost-capped solar system exploration missions with highly focused scientific goals.

JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), support the InSight mission. CNES provided the SEIS instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the HP3 instrument.

For more information about InSight, visit:

https://mars.nasa.gov/insight/

For more information about NASA's Mars missions, go to:

https://mars.nasa.gov

News Media Contact

DC Agle

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-9011

agle@jpl.nasa.gov

Dwayne Brown / JoAnna Wendel

NASA Headquarters, Washington

202-358-1726 / 202-358-1003

dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov

2018-258



from News and Features https://ift.tt/2yRjOxQ
via IFTTT

Researchers Discuss Science Launching on Next Space Station Resupply Mission

NASA will host a media teleconference at 1 p.m. EST Thursday, Nov. 8, to discuss select science investigations and technology demonstrations launching on the next Northrop Grumman commercial resupply flight to the International Space Station.

from NASA Breaking News https://ift.tt/2ANaWuE
via IFTTT

Monday, 5 November 2018

NASA Hosts Science Chat on Two Upcoming Out-of-this-World Encounters

NASA will host a live Science Chat at 2 p.m. EST Wednesday, Nov. 7, to discuss upcoming encounters of two of the agency’s planetary missions.

from NASA Breaking News https://ift.tt/2Qj7wF6
via IFTTT

GRACE-FO Resumes Data Collection


The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission has resumed collecting science-quality data and planned in-orbit checks after successfully completing a switchover to a backup system in the microwave instrument (MWI) on one of the mission's twin spacecraft. The in-orbit checks include calibrations and other system tests, and are expected to continue until January, when GRACE-FO will enter the science phase of its mission.

"The new unit is performing as expected," said Frank Webb, GRACE-FO project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "The spacecraft are tracking each other and collecting science-quality data."

Both GRACE-FO satellites are equipped with redundant systems in their MWIs, which are their primary measurement instruments. The MWIs very precisely measure the distance change between the two satellites.

The switchover to the backup system was required after an anomaly occurred in a component of the primary system. The primary unit was powered down on July 19, when an instrument fault monitor detected that it was using less current than expected. After a full investigation by an anomaly response team, the mission team began a series of procedures required to switch over to the new unit. The backup system in the MWI was powered up on Oct. 19.

The primary science objective of GRACE-FO - like that of its predecessor GRACE, which operated from 2002 to 2017 - is to track how water is redistributed on Earth by producing highly accurate, monthly gravity field maps. Measurements of changes in Earth's gravity field provide measurements of mass change and enable unique insights into Earth's changing climate, Earth system processes like droughts and sea level changes, and the impacts of human activities on water resources.

GRACE-FO is a partnership between NASA and the German Research Centre for Geosciences (GeoForschungsZentrum [GFZ]). Both spacecraft are being operated from the German Space Operations Center in Oberpfaffenhofen, Germany, under a GFZ contract with the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt). JPL manages the mission for NASA's Science Mission Directorate at NASA Headquarters in Washington. Caltech in Pasadena, California, manages JPL for NASA.

For more information about GRACE-FO, see:

https://www.nasa.gov/gracefo

https://gracefo.jpl.nasa.gov/

News Media Contact

Esprit Smith

Jet Propulsion Laboratory, Pasadena, California

818-354-4269

Esprit.Smith@jpl.nasa.gov

Written by Carol Rasmussen

NASA's Earth Science News Team

2018-257



from News and Features https://ift.tt/2OrS1sN
via IFTTT

Saturday, 3 November 2018

NASA Invites Media to Observe Quiet Supersonic Flight Series Operations

NASA is inviting journalists to learn about the agency’s Quiet Supersonic Flights 2018 campaign during a media day event taking place Friday, Nov. 9, in the Houston area.

from NASA Breaking News https://ift.tt/2F0W9AG
via IFTTT

Friday, 2 November 2018

Experience High-Res Science in First 8K Footage from Space

Fans of science in space now can experience fast-moving footage in even higher definition as NASA and ESA (European Space Agency) deliver the first 8K ultra high definition (UHD) video of astronauts living, working and conducting research from the International Space Station.

from NASA Breaking News https://ift.tt/2AIkZ3X
via IFTTT

NASA Television to Air Departure of Japanese Cargo Ship from Space Station

After delivering more than five tons of supplies, water, spare parts and experiments to the International Space Station, a Japanese cargo spacecraft is scheduled to depart the orbiting laboratory 11:50 a.m. EST Wednesday, Nov. 7.

from NASA Breaking News https://ift.tt/2OkxQwG
via IFTTT

Thursday, 1 November 2018

NASA's Dawn Mission to Asteroid Belt Comes to End


NASA's Dawn spacecraft has gone silent, ending a historic mission that studied time capsules from the solar system's earliest chapter.

Dawn missed scheduled communications sessions with NASA's Deep Space Network on Wednesday, Oct. 31, and Thursday, Nov. 1. After the flight team eliminated other possible causes for the missed communications, mission managers concluded that the spacecraft finally ran out of hydrazine, the fuel that enables the spacecraft to control its pointing. Dawn can no longer keep its antennae trained on Earth to communicate with mission control or turn its solar panels to the Sun to recharge.

NASA's Dawn spacecraft turned science fiction into science fact by using ion propulsion to explore the two largest bodies in the main asteroid belt, Vesta and Ceres. The mission will end this fall, when the spacecraft runs out of hydrazine, which keeps it oriented and in communication with Earth.

The Dawn spacecraft launched 11 years ago to visit the two largest objects in the main asteroid belt. Currently, it's in orbit around the dwarf planet Ceres, where it will remain for decades.

"Today, we celebrate the end of our Dawn mission - its incredible technical achievements, the vital science it gave us, and the entire team who enabled the spacecraft to make these discoveries," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "The astounding images and data that Dawn collected from Vesta and Ceres are critical to understanding the history and evolution of our solar system."

Dawn launched in 2007 on a journey that put about 4.3 billion miles (6.9 billion kilometers) on its odometer. Propelled by ion engines, the spacecraft achieved many firsts along the way. In 2011, when Dawn arrived at Vesta, the second largest world in the main asteroid belt, the spacecraft became the first to orbit a body in the region between Mars and Jupiter. In 2015, when Dawn went into orbit around Ceres, a dwarf planet that is also the largest world in the asteroid belt, the mission became the first to visit a dwarf planet and go into orbit around two destinations beyond Earth.

"The fact that my car's license plate frame proclaims, 'My other vehicle is in the main asteroid belt,' shows how much pride I take in Dawn," said Mission Director and Chief Engineer Marc Rayman at NASA's Jet Propulsion Laboratory. "The demands we put on Dawn were tremendous, but it met the challenge every time. It's hard to say goodbye to this amazing spaceship, but it's time."

The data Dawn beamed back to Earth from its four science experiments enabled scientists to compare two planet-like worlds that evolved very differently. Among its accomplishments, Dawn showed how important location was to the way objects in the early solar system formed and evolved. Dawn also reinforced the idea that dwarf planets could have hosted oceans over a significant part of their history - and potentially still do.

"In many ways, Dawn's legacy is just beginning," said Principal Investigator Carol Raymond at JPL. "Dawn's data sets will be deeply mined by scientists working on how planets grow and differentiate, and when and where life could have formed in our solar system. Ceres and Vesta are important to the study of distant planetary systems, too, as they provide a glimpse of the conditions that may exist around young stars."

Because Ceres has conditions of interest to scientists who study chemistry that leads to the development of life, NASA follows strict planetary protection protocols for the disposal of the Dawn spacecraft. Dawn will remain in orbit for at least 20 years, and engineers have more than 99 percent confidence the orbit will last for at least 50 years.

So, while the mission plan doesn't provide the closure of a final, fiery plunge - the way NASA's Cassini spacecraft ended last year, for example - at least this is certain: Dawn spent every last drop of hydrazine making science observations of Ceres and radioing them back so we could learn more about the solar system we call home.

The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. JPL is responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.

The Dawn media toolkit, with a mission timeline, images, video and quick facts, is available here:

https://dawn.jpl.nasa.gov/mission/toolkit

Watch the video "Dawn: Mission to Small Worlds," with NASA Chief Scientist Jim Green, at:

https://www.youtube.com/watch?v=JrafypeEhTM

More information about Dawn is available at:

https://www.nasa.gov/dawn

News Media Contact

Dwayne Brown / JoAnna Wendel

Headquarters, Washington

202-358-1726 / 202-358-1003

dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov

Gretchen McCartney

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-6215

gretchen.p.mccartney@jpl.nasa.gov

2018-256



from News and Features https://ift.tt/2ziy425
via IFTTT

NASA’s Dawn Mission to Asteroid Belt Comes to End

NASA’s Dawn spacecraft has gone silent, ending a historic mission that studied time capsules from the solar system’s earliest chapter.

from NASA Breaking News https://ift.tt/2PBPG2U
via IFTTT

NASA Astronaut Anne McClain Available for Interviews Before First Spaceflight

NASA astronaut Anne McClain will be available at 9:30 a.m. EST Friday, Nov. 9, for live satellite interviews from Star City, Russia, before she launches to the International Space Station on her first spaceflight.

from NASA Breaking News https://ift.tt/2Qc8LpJ
via IFTTT

Five Things to Know About InSight's Mars Landing


Every Mars landing is a knuckle-whitening feat of engineering. But each attempt has its own quirks based on where a spacecraft is going and what kind of science the mission intends to gather.

On Nov. 26, NASA will try to safely set a new spacecraft on Mars. InSight is a lander dedicated to studying the deep interior of the planet - the first mission ever to do so.

Here are a few things to know about InSight's landing.

Landing on Mars is hard

Only about 40 percent of the missions ever sent to Mars - by any space agency - have been successful. The U.S. is the only nation whose missions have survived a Mars landing. The thin atmosphere - just 1 percent of Earth's - means that there's little friction to slow down a spacecraft. Despite that, NASA has had a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed on and roved across the surface of the Red Planet.

When NASA's InSight descends to the Red Planet on Nov. 26, 2018, it is guaranteed to be a white-knuckle event. Rob Manning, chief engineer at NASA's Jet Propulsion Laboratory, explains the critical steps that must happen in perfect sequence to get the robotic lander safely to the surface.

InSight uses tried-and-true technology

In 2008, NASA's Jet Propulsion Laboratory in Pasadena, California, successfully landed the Phoenix spacecraft at Mars' North Pole. InSight is based on the Phoenix spacecraft, both of which were built by Lockheed Martin Space in Denver. Despite tweaks to its heat shield and parachute, the overall landing design is still very much the same: After separating from a cruise stage, an aeroshell descends through the atmosphere. The parachute and retrorockets slow the spacecraft down, and suspended legs absorb some shock from the touchdown.

InSight is landing on "the biggest parking lot on Mars"

One of the benefits of InSight's science instruments is that they can record equally valuable data regardless of where they are on the planet. That frees the mission from needing anything more complicated than a flat, solid surface (ideally with few boulders and rocks). For the mission's team, the landing site at Elysium Planitia is sometimes thought as "the biggest parking lot on Mars."

InSight was built to land in a dust storm

InSight's engineers have built a tough spacecraft, able to touch down safely in a dust storm if it needs to. The spacecraft's heat shield is designed to be thick enough to withstand being "sandblasted" by dust. Its parachute has suspension lines that were tested to be stronger than Phoenix's, in case it faces more air resistance due to the atmospheric conditions expected during a dust storm.

The entry, descent and landing sequence also has some flexibility to handle shifting weather. The mission team will be receiving daily weather updates from NASA's Mars Reconnaissance Orbiter in the days before landing so that they can tweak when InSight's parachute deploys and when it uses radar to find the Martian surface.

After landing, InSight will provide new science about rocky planets

InSight will teach us about the interior of planets like our own. The mission team hopes that by studying the deep interior of Mars, we can learn how other rocky worlds, including Earth and the Moon, formed. Our home planet and Mars were molded from the same primordial stuff more than 4.5 billion years ago but then became quite different. Why didn't they share the same fate?

When it comes to rocky planets, we've only studied one in detail: Earth. By comparing Earth's interior to that of Mars, InSight's team members hope to better understand our solar system. What they learn might even aid the search for Earth-like exoplanets, narrowing down which ones might be able to support life. So while InSight is a Mars mission, it's also much more than a Mars mission.

You can read more about how the science of the mission is unique here. A press kit released today includes additional information on the mission.

JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Polish Space Agency (CBK) and Astronika in Poland. Spain's Centro de Astrobiología (CAB) supplied the wind sensors.

Read more about InSight here:

https://mars.nasa.gov/insight/

News Media Contact

Andrew Good

Jet Propulsion Laboratory, Pasadena, Calif.

818-393-2433

andrew.c.good@jpl.nasa.gov

2018-255



from News and Features https://ift.tt/2ET0LZj
via IFTTT

Station Science Top News: Dec. 20, 2024

A method for evaluating thermophysical properties of metal alloys Simulation of the solidification of metal alloys, a key step in certain i...