Tools and thoughts!
Saturday, 10 November 2018
NASA TV Coverage Set for Nov. 15 Cygnus Launch to International Space Station
from NASA Breaking News https://ift.tt/2zHDKD7
via IFTTT
Thursday, 8 November 2018
NASA Looks to University Researchers for Innovative Space Tech Solutions
from NASA Breaking News https://ift.tt/2Dtz7ka
via IFTTT
NASA Announces Media Activities for New Horizons’ New Year’s Kuiper Belt Flyby
from NASA Breaking News https://ift.tt/2FdgkeD
via IFTTT
NASA Updates Media Invitation to Observe Quiet Supersonic Flight Series Operations
from NASA Breaking News https://ift.tt/2Dsdkt3
via IFTTT
Wednesday, 7 November 2018
Cosmic Detective Work: Why We Care About Space Rocks
Highlights:
› Asteroids, comets and other small objects in space hold clues to our origins, but may also pose hazards.
› Small worlds likely delivered the ingredients of life to Earth.
› Several NASA missions are either on their way to these small worlds, or are in development.
The entire history of human existence is a tiny blip in our solar system's 4.5-billion-year history. No one was around to see planets forming and undergoing dramatic changes before settling in their present configuration. In order to understand what came before us -- before life on Earth and before Earth itself -- scientists need to hunt for clues to that mysterious distant past.
Those clues come in the form of asteroids, comets and other small objects. Like detectives sifting through forensic evidence, scientists carefully examine these small bodies for insights about our origins. They tell of a time when countless meteors and asteroids rained down on the planets, burned up in the Sun, shot out beyond the orbit of Neptune or collided with one another and shattered into smaller bodies. From distant, icy comets to the asteroid that ended the reign of the dinosaurs, each space rock contains clues to epic events that shaped the solar system as we know it today -- including life on Earth.
NASA's missions to study these "non-planets" help us understand how planets including Earth formed, locate hazards from incoming objects and think about the future of exploration. They have played key roles in our solar system's history, and reflect how it continues to change today.
"They might not have giant volcanoes, global oceans or dust storms, but small worlds could answer big questions we have about the origins of our solar system," said Lori Glaze, acting director for the Planetary Science Division at NASA Headquarters in Washington.
NASA has a long history of exploring small bodies, beginning with Galileo's 1991 flyby of asteroid Gaspra. The first spacecraft to orbit an asteroid, Near Earth Asteroid Rendezvous (NEAR) Shoemaker, also successfully landed on asteroid Eros in 2000 and took measurements that originally hadn't been planned. The Deep Impact mission drove a probe into Comet Tempel 1 in 2005 and prompted scientists to rethink where comets formed. More recent efforts have built on those successes and will continue to teach us more about our solar system. Here's an overview of what we can learn:
This representation of Ceres' Occator Crater in false colors shows differences in the dwarf planet's surface composition. Image Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA
Larger view
Building Blocks of Planets
Our solar system as we know it today formed from grains of dust -- tiny particles of rock, metal and ice -- swirling in a disk around our infant Sun. Most of the material from this disk fell into the newborn star, but some bits avoided that fate and stuck together, growing into asteroids, comets and even planets. Lots of leftovers from that process have survived to this day. The growth of planets from smaller objects is one piece of our history that asteroids and comets can help us investigate.
"Asteroids, comets and other small bodies hold material from the solar system's birth. If we want to know where we come from, we must study these objects," Glaze said.
Two ancient fossils providing clues to this story are Vesta and Ceres, the largest bodies in the asteroid belt between Mars and Jupiter. NASA's Dawn spacecraft, which recently ended its mission, orbited both of them and showed definitively that they are not part of the regular "asteroid club." While many asteroids are loose collections of rubble, the interiors of Vesta and Ceres are layered, with the densest material at their cores. (In scientific terms, their interiors are said to be "differentiated.") This indicates both of these bodies were on their way to becoming planets, but their growth was stunted -- they never had enough material to get as big as the major planets.
But while Vesta is largely dry, Ceres is wet. It may have as much as 25 percent water, mostly bound up in minerals or ice, with the possibility of underground liquid. The presence of ammonia at Ceres is also interesting, because it typically requires cooler temperatures than Ceres' current location. This indicates the dwarf planet could have formed beyond Jupiter and migrated in, or at least incorporated materials that originated farther from the Sun. The mystery of Ceres' origins shows how complex planetary formation can be, and it underscores the complicated history of our solar system.
This artist's concept depicts the spacecraft of NASA's Psyche mission near the mission's target, the metal asteroid Psyche. Image Credit: NASA/JPL-Caltech/Arizona State Univ./Space Systems Loral/Peter Rubin
Larger view
Although we can indirectly study the deep interiors of the planets for clues about their origins, as NASA's InSight mission will do on Mars, it's impossible to drill down into the core of any sizeable object in space, including Earth. Nevertheless, a rare object called Psyche may offer the opportunity to explore a planet-like body's core without any digging. Asteroid Psyche appears to be the exposed iron-nickel core of a protoplanet -- a small world that formed early in our solar system's history but never reached planetary size. Like Vesta and Ceres, Psyche saw its path to planethood disrupted. NASA's Psyche mission, launching in 2022, will help tell the story of planet formation by studying this metal object in detail.
Artist's impression of NASA's New Horizons spacecraft encountering 2014 MU69, a Kuiper Belt object that orbits the Sun 1 billion miles (1.6 billion kilometers) beyond Pluto, on Jan. 1, 2019. Image Credit: NASA/JHUAPL/SwRI
Larger view
Farther afield, NASA's New Horizons spacecraft is currently on its way to a distant object called 2014 MU69, nicknamed "Ultima Thule" by the mission. One billion miles farther from the Sun than Pluto, MU69 is a resident of the Kuiper Belt, a region of ice-rich objects beyond the orbit of Neptune. Objects like MU69 may represent the most primitive, or unaltered, material that remains in the solar system. While the planets orbit in ellipses around the Sun, MU69 and many other Kuiper Belt objects have very circular orbits, suggesting they have not moved from their original paths in 4.5 billion years. These objects may represent the building blocks of Pluto and other distant icy worlds like it. New Horizons will make its closestapproach to MU69 on Jan. 1, 2019-- the farthest planetary flyby in history.
"Ultima Thule is incredibly scientifically valuable for understanding the origin of our solar system and its planets,"said Alan Stern, principal investigator of New Horizons, based at Southwest Research Institute in Boulder, Colorado. "It's ancient and pristine, andnotlike anything we've seen before."
Delivery of the Elements of Life
Small worlds are also likely responsible for seeding Earth with the ingredients for life. Studying how much water they have is evidence for how they helped seed life on Earth.
"Small bodies are the game changers. They participate in the slow and steady evolution of our solar system over time, and influence planetary atmospheres and opportunities for life. Earth is part of that story," said NASA's chief scientist Jim Green.
This "super-resolution" view of asteroid Bennu was created using eight images obtained by NASA's OSIRIS-REx spacecraft on Oct. 29, 2018, from a distance of about 205 miles (330 kilometers). Image credit: NASA/Goddard/University of Arizona
Larger view
One example of an asteroid containing the building blocks of life is Bennu, the target of NASA's OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) mission. Bennu may be loaded with molecules of carbon and water, both of which are necessary for life as we know it. As Earth formed, and afterward, objects like Bennu rained down and delivered these materials to our planet. These objects did not have oceans themselves, but rather water molecules bound up in minerals. Up to 80 percent of Earth's water is thought to have come from small bodies like Bennu. By studying Bennu, we can better understand the kinds of objects that allowed a barren young Earth to blossom with life.
Bennu likely originated in the main asteroid belt between Mars and Jupiter, and it's thought to have survived a catastrophic collision that happened between 800 million and 2 billion years ago. Scientists think a big, carbon-rich asteroid shattered into thousands of pieces, and Bennu is one of the remnants. Rather than a solid object, Bennu is thought to be a "rubble pile" asteroid -- a loose collection of rocks stuck together through gravity and another force scientists call "cohesion." OSIRIS-REx, which will arrive at Bennu in early December 2018, after a 1.2-billion-mile (2-billion-kilometer) journey, and will bring back a sample of this intriguing object to Earth in a sample-return capsule in 2023.
The Japanese Hayabusa-2 mission is also looking at an asteroid from the same family of bodies thought to have delivered ingredients for life to Earth. Currently in orbit at asteroid Ryugu, with small hopping rovers on the surface, the mission will collect samples and return them in a capsule to Earth for analysis by the end of 2020. We will learn a lot comparing Bennu and Ryugu, and understanding the similarities and differences between their samples.
Tracers of Solar System Evolution
Most of the material that formed our solar system, including Earth, didn't live to tell the tale. It fell into the Sun or was ejected beyond the reaches of our most powerful telescopes; only a small fraction formed the planets. But there are some renegade remnants of the early days when the stuff of planets swirled with an uncertain fate around the Sun.
A particularly catastrophic time for the solar system was between 50 and 500 million years after the Sun formed. Jupiter and Saturn, our system's most massive giants, reorganized the objects around them as their gravity interacted with smaller worlds such as asteroids. Uranus and Neptune may have originated closer to the Sun and been kicked outward as Jupiter and Saturn moved around. Saturn, in fact, may have prevented Jupiter from "eating" some of the terrestrial planets, including Earth, as its gravity counteracted Jupiter's further movement toward the Sun.
Conceptual image of the Lucy mission to the Trojan asteroids. Image credit: NASA/SwRI
Larger view
Swarms of asteroids called the Trojans could help sort out the details of that turbulent period. The Trojans comprise two clusters of small bodies that share Jupiter's orbit around the Sun, with one group ahead of Jupiter and one trailing behind. But some Trojans seem to be made of different materials than others, as indicated by their varying colors. Some are much redder than others and may have originated beyond the orbit of Neptune, while the grayer ones may have formed much closer to the Sun. The leading theory is that as Jupiter moved around long ago, these objects were corralled into Lagrange points -- places where the gravity of Jupiter and the Sun create holding areas where asteroids can be captured. The Trojans' diversity, scientists say, reflects Jupiter's journey to its present location. "They're the remnants of what was going on the last time Jupiter moved," said Hal Levison, researcher at Southwest Research Institute.
NASA's Lucy mission, launching in October 2021, will send a spacecraft to the Trojans for the first time, thoroughly investigating six Trojans (three asteroids in each swarm). For Levison, the mission's principal investigator, the spacecraft will test ideas he and colleagues have been working on for decades about Jupiter's reshaping of the solar system. "What would really be interesting is what we don't expect," he said.
Processes in an Evolving Solar System
After sundown, under the right conditions, you may notice scattered sunlight in the ecliptic plane, the region of the sky where the planets orbit. This is because sunlight is being scattered by dust left over from the collisions of small bodies such as comets and asteroids. Scientists call this phenomenon "zodiacal light," and it's an indication that our solar system is still active. Zodiacal dust around other stars indicates that they, too, may harbor active planetary systems.
Dust from small bodies has had an important role in our planet in particular. About 100 tons of meteoritic material and dust material fall on Earth every day. Some of it comes from comets, whose activity has direct implications for Earth's evolution. As comets approach the Sun and experience its heat, gases inside the comet bubble up and carry away dusty material from the comet -- including ingredients for life. NASA's Stardust spacecraft flew by Comet 81P/Wild and found that cometary dust contains amino acids, which are building blocks of life.
This view shows Comet 67P/Churyumov-Gerasimenko as seen by the OSIRIS wide-angle camera on ESA's Rosetta spacecraft on September 29, 2016, when Rosetta was at an altitude of 14 miles (23 kilometers). Image Credit: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA
Larger view
Occasional outbursts of gas and dust observed in comets indicate activity on or near their surfaces, such as landslides. The European Space Agency's Rosetta mission, which completed its exploration of Comet 67P/Churyumov-Gerasimenko in 2016, delivered unprecedented insights about cometary activity. Among the changes in the comet, the spacecraft observed a massive cliff collapse, a large crack get bigger and a boulder move. "We discovered that boulders the size of a large truck could be moved across the comet's surface a distance as long as one-and-a-half football fields," Ramy El-Maarry, a member of the U.S. Rosetta science team from the University of Colorado, Boulder, said in 2017.
Comets also influence planetary motion today. As Jupiter continues to fling comets outward, it moves inward ever so slightly because of the gravitational dance with the icy bodies. Neptune, meanwhile, throws comets inward and in turn gets a tiny outward push. Uranus and Saturn are also moving outward very slowly in this process.
"Right now we're talking about teeny amounts of motions because there's not a lot of mass left," Levison said.
Fun fact: The spacecraft that has seen the most comets is NASA's Solar & Heliospheric Observatory (SOHO), most famous for its study of the Sun. SOHO has seen the Sun "eat" thousands of comets, which means that these small worlds were spraying material in the inner part of the solar system on their journey to become the Sun's dinner.
This animation portrays a comet as it approaches the inner solar system. Light from the Sun warms the comet's core, or nucleus, an object so small it cannot be seen at this scale. Image credit: NASA/JPL-Caltech
See animation
Hazards to Earth
Asteroids can still pose an impact hazard to the planets, including our own.
While the Trojans are stuck being Jupiter groupies, Bennu, the target of the OSIRIS-REx mission, is one of the most potentially hazardous asteroids to Earth that is currently known, even though its odds of colliding with Earth are still relatively small; scientists estimate Bennu has a 1?in?2,700 chance of impacting our planet during one of its close approaches to Earth in the late 22nd century. Right now, scientists can predict Bennu's path quite precisely through the year 2135, when the asteroid will make one of its close passes by Earth. Close observations by OSIRIS-REx will get an even tighter handle on Bennu's journey, and help scientists working on safeguarding our planet against hazardous asteroids to better understand what it would take to deflect one on an impact trajectory.
"We're developing a lot of technologies for operating with precision around these kinds of bodies, and targeting locations on their surfaces, as well as characterizing their overall physical and chemical properties. You would need this information if you wanted to design an asteroid deflection mission," said Dante Lauretta, principal investigator for the OSIRIS-REx mission, based at the University of Arizona in Tucson.
This animation shows how NASA's Double Asteroid Redirection Test (DART) would target and strike the smaller (left) element of the binary asteroid Didymos to demonstrate how a kinetic impact could potentially redirect an asteroid as part of the agency's planetary defense program.
Another upcoming mission that will test a technique for defending the planet from naturally occurring impact hazards is NASA's Double Asteroid Redirection Test (DART) mission, which will attempt to change a small asteroid's motion. How? Kinetic impact -- in other words, collide something with it, but in a more precise and controlled way than nature does it.
DART's target is Didymos, a binary asteroid composed of two objects orbiting each other. The larger body is about half a mile (800 meters) across, with a small moonlet that is less than one-tenth of a mile (150 meters) wide. An asteroid this size could result in widespread regional damage if one were to impact Earth. DART will deliberately crash itself into the moonlet to slightly change the small object's orbital speed. Telescopes on Earth will then measure this change in speed by observing the new period of time it takes the moonlet to complete an orbit around the main body, which is expected to be a change of less than a fraction of one percent. But even that small of change could be enough to make a predicted impactor miss Earth in some future impact scenario. The spacecraft, being built by the Johns Hopkins University Applied Physics Laboratory, is scheduled for launch in spring-summer 2021.
Didymos and Bennu are just two of the almost 19,000 known near-Earth asteroids. There are over 8,300 known near-Earth asteroids the size of the moonlet of Didymos and larger, but scientists estimate that about 25,000 asteroids in that size range exist in near-Earth space. The space telescope helping scientists discover and understand these kinds of objects, including potential hazards, is called NEOWISE (which stands for Near-Earth Object Wide-field Infrared Survey Explorer).
"For most asteroids, we know little about them except for their orbit and how bright they look. With NEOWISE, we can use the heat emitted from the objects to give us a better assessment of their sizes," said Amy Mainzer, principal investigator of NEOWISE, based at NASA's Jet Propulsion Laboratory. "That's important because asteroid impacts can pack quite a punch, and the amount of energy depends strongly on the size of the object."
This artist's concept shows the Wide-field Infrared Survey Explorer, or WISE, spacecraft, in its orbit around Earth. In its NEOWISE mission it finds and characterizes asteroids. Image credit: NASA/JPL-Caltech
Larger view
Small Worlds as Pit Stops, Resources for Future Exploration
There are no gas stations in space yet, but scientists and engineers are already starting to think about how asteroids could one day serve as refueling stations for spacecraft on the way to farther-flung destinations. These small worlds might also help astronauts restock their supplies. For example, Bennu likely has water bound in clay minerals, which could perhaps one day be harvested for hydrating thirsty space travelers.
"In addition to science, the future will indeed be mining," Green said. "The materials in space will be used in space for further exploration."
How did metals get on asteroids? As they formed, asteroids and other small worlds collected heavy elements forged billions of years ago. Iron and nickel found in asteroids were produced by previous generations of stars and incorporated in the formation of our solar system.
These small bodies also contain heavier metals forged in stellar explosions called supernovae. The violent death of a star, which can lead to the creation of a black hole, spreads elements heavier than hydrogen and helium throughout the universe. These include metals like gold, silver and platinum, as well as oxygen, carbon and other elements we need for survival. Another kind of cataclysm -- the collision of supernova remnants called neutron stars -- can also create and spread heavy metals. In this way small bodies are also forensic evidence of the explosions or collisions of long-dead stars.
Because of big things, we now have a lot of very small things. And from small things, we get big clues about our past -- and possibly resources for our future. Exploring these objects is important, even if they aren't planets.
They are small worlds, after all.
News Media Contact
By Elizabeth Landau
2018-259
from News and Features https://ift.tt/2STHqu7
via IFTTT
European-Built Service Module Arrives in U.S. for First Orion Moon Mission
from NASA Breaking News https://ift.tt/2PNUJgO
via IFTTT
Tuesday, 6 November 2018
NASA Leads Urban Air Mobility ‘Grand Challenge’ Discussion with Industry
from NASA Breaking News https://ift.tt/2Dtj7yG
via IFTTT
The Mars InSight Landing Site Is Just Plain Perfect
No doubt about it, NASA explores some of the most awe-inspiring locations in our solar system and beyond. Once seen, who can forget the majesty of astronaut Jim Irwin standing before the stark beauty of the Moon's Hadley Apennine mountain range, of the Hubble Space Telescope's gorgeous "Pillars of Creation" or Cassini's magnificent mosaic of Saturn?
Mars also plays a part in this visually compelling equation, with the high-definition imagery from the Curiosity rover of the ridges and rounded buttes at the base of Mount Sharp bringing to mind the majesty of the American Southwest. That said, Elysium Planitia - the site chosen for the Nov. 26 landing of NASA's InSight mission to Mars - will more than likely never be mentioned with those above because it is, well, plain.
"If Elysium Planitia were a salad, it would consist of romaine lettuce and kale - no dressing," said InSight principal investigator Bruce Banerdt at NASA's Jet Propulsion Laboratory in Pasadena, California. "If it were an ice cream, it would be vanilla."
Yes, the landing site of NASA's next Mars mission may very well look like a stadium parking lot, but that is the way the Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) project likes it.
"Previous missions to the Red Planet have investigated its surface by studying its canyons, volcanoes, rocks and soil," said Banerdt. "But the signatures of the planet's formation processes can be found only by sensing and studying evidence buried far below the surface. It is InSight's job to study the deep interior of Mars, taking the planet's vital signs - its pulse, temperature and reflexes."
Taking those vital signs will help the InSight science team look back to a time when the rocky planets of the solar system formed. The investigations will depend on three instruments:
A six-sensor seismometer called the Seismic Experiment for Interior Structure (SEIS) will record seismic waves traveling through the interior structure of the planet. Studying seismic waves will tell scientists what might be creating the waves. (On Mars, scientists suspect that the culprits may be marsquakes or meteorites striking the surface.)
The mission's Heat Flow and Physical Properties Package (HP3) will burrow deeper than any other scoop, drill or probe on Mars before to gauge how much heat is flowing out of the planet. Its observations will shed light on whether Earth and Mars are made of the same stuff.
Finally, InSight's Rotation and Interior Structure Experiment (RISE) experiment will use the lander's radios to assess the wobble of Mars' rotation axis, providing information about the planet's core.
For InSight to do its work, the team needed a landing site that checked off several boxes, because as a three-legged lander - not a rover - InSight will remain wherever it touches down.
"Picking a good landing site on Mars is a lot like picking a good home: It's all about location, location, location," said Tom Hoffman, InSight project manager at JPL. "And for the first time ever, the evaluation for a Mars landing site had to consider what lay below the surface of Mars. We needed not just a safe place to land, but also a workspace that's penetrable by our 16-foot-long (5-meter) heat-flow probe."
The site also needs to be bright enough and warm enough to power the solar cells while keeping its electronics within temperature limits for an entire Martian year (26 Earth months).
So the team focused on a band around the equator, where the lander's solar array would have adequate sunlight to power its systems year-round. Finding an area that would be safe enough for InSight to land and then deploy its solar panels and instruments without obstructions took a little longer.
"The site has to be a low-enough elevation to have sufficient atmosphere above it for a safe landing, because the spacecraft will rely first on atmospheric friction with its heat shield and then on a parachute digging into Mars' tenuous atmosphere for a large portion of its deceleration," said Hoffman. "And after the chute has fallen away and the braking rockets have kicked in for final descent, there needs to be a flat expanse to land on - not too undulating and relatively free of rocks that could tip the tri-legged Mars lander."
Of 22 sites considered, only Elysium Planitia, Isidis Planitia and Valles Marineris met the basic engineering constraints. To grade the three remaining contenders, reconnaissance images from NASA's Mars orbiters were scoured and weather records searched. Eventually, Isidis Planitia and Valles Marineris were ruled out for being too rocky and windy.
That left the 81-mile long, 17-mile-wide (130-kilometer-long, 27-kilometer-wide) landing ellipse on the western edge of a flat, smooth expanse of lava plain.
"If you were a Martian coming to explore Earth's interior like we are exploring Mars' interior, it wouldn't matter if you put down in the middle of Kansas or the beaches of Oahu," said Banerdt. "While I'm looking forward to those first images from the surface, I am even more eager to see the first data sets revealing what is happening deep below our landing pads. The beauty of this mission is happening below the surface. Elysium Planitia is perfect."
After a 205-day journey that began on May 5, NASA's InSight mission will touch down on Mars on Nov. 26 a little before 3 p.m. EST (12 p.m. PST).Its solar panels will unfurl within a few hours of touchdown. Mission engineers and scientists will take their time assessing their "workspace" prior to deploying SEIS and HP3 on the surface - about three months after landing - and begin the science in earnest.
InSight was the 12th selection in NASA's series of Discovery-class missions. Created in 1992, the Discovery Program sponsors frequent, cost-capped solar system exploration missions with highly focused scientific goals.
JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.
A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), support the InSight mission. CNES provided the SEIS instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the HP3 instrument.
For more information about InSight, visit:
https://mars.nasa.gov/insight/
For more information about NASA's Mars missions, go to:
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
Dwayne Brown / JoAnna Wendel
NASA Headquarters, Washington
202-358-1726 / 202-358-1003
dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov
2018-258
from News and Features https://ift.tt/2yRjOxQ
via IFTTT
Researchers Discuss Science Launching on Next Space Station Resupply Mission
from NASA Breaking News https://ift.tt/2ANaWuE
via IFTTT
Monday, 5 November 2018
NASA Hosts Science Chat on Two Upcoming Out-of-this-World Encounters
from NASA Breaking News https://ift.tt/2Qj7wF6
via IFTTT
GRACE-FO Resumes Data Collection
The Gravity Recovery and Climate Experiment Follow-On (GRACE-FO) mission has resumed collecting science-quality data and planned in-orbit checks after successfully completing a switchover to a backup system in the microwave instrument (MWI) on one of the mission's twin spacecraft. The in-orbit checks include calibrations and other system tests, and are expected to continue until January, when GRACE-FO will enter the science phase of its mission.
"The new unit is performing as expected," said Frank Webb, GRACE-FO project scientist at NASA's Jet Propulsion Laboratory in Pasadena, California. "The spacecraft are tracking each other and collecting science-quality data."
Both GRACE-FO satellites are equipped with redundant systems in their MWIs, which are their primary measurement instruments. The MWIs very precisely measure the distance change between the two satellites.
The switchover to the backup system was required after an anomaly occurred in a component of the primary system. The primary unit was powered down on July 19, when an instrument fault monitor detected that it was using less current than expected. After a full investigation by an anomaly response team, the mission team began a series of procedures required to switch over to the new unit. The backup system in the MWI was powered up on Oct. 19.
The primary science objective of GRACE-FO - like that of its predecessor GRACE, which operated from 2002 to 2017 - is to track how water is redistributed on Earth by producing highly accurate, monthly gravity field maps. Measurements of changes in Earth's gravity field provide measurements of mass change and enable unique insights into Earth's changing climate, Earth system processes like droughts and sea level changes, and the impacts of human activities on water resources.
GRACE-FO is a partnership between NASA and the German Research Centre for Geosciences (GeoForschungsZentrum [GFZ]). Both spacecraft are being operated from the German Space Operations Center in Oberpfaffenhofen, Germany, under a GFZ contract with the German Aerospace Center (Deutsches Zentrum für Luft- und Raumfahrt). JPL manages the mission for NASA's Science Mission Directorate at NASA Headquarters in Washington. Caltech in Pasadena, California, manages JPL for NASA.
For more information about GRACE-FO, see:
News Media Contact
Esprit Smith
Jet Propulsion Laboratory, Pasadena, California
818-354-4269
Esprit.Smith@jpl.nasa.gov
Written by Carol Rasmussen
NASA's Earth Science News Team
2018-257
from News and Features https://ift.tt/2OrS1sN
via IFTTT
Saturday, 3 November 2018
NASA Invites Media to Observe Quiet Supersonic Flight Series Operations
from NASA Breaking News https://ift.tt/2F0W9AG
via IFTTT
Friday, 2 November 2018
Experience High-Res Science in First 8K Footage from Space
from NASA Breaking News https://ift.tt/2AIkZ3X
via IFTTT
NASA Television to Air Departure of Japanese Cargo Ship from Space Station
from NASA Breaking News https://ift.tt/2OkxQwG
via IFTTT
Thursday, 1 November 2018
NASA's Dawn Mission to Asteroid Belt Comes to End
NASA's Dawn spacecraft has gone silent, ending a historic mission that studied time capsules from the solar system's earliest chapter.
Dawn missed scheduled communications sessions with NASA's Deep Space Network on Wednesday, Oct. 31, and Thursday, Nov. 1. After the flight team eliminated other possible causes for the missed communications, mission managers concluded that the spacecraft finally ran out of hydrazine, the fuel that enables the spacecraft to control its pointing. Dawn can no longer keep its antennae trained on Earth to communicate with mission control or turn its solar panels to the Sun to recharge.
NASA's Dawn spacecraft turned science fiction into science fact by using ion propulsion to explore the two largest bodies in the main asteroid belt, Vesta and Ceres. The mission will end this fall, when the spacecraft runs out of hydrazine, which keeps it oriented and in communication with Earth.
The Dawn spacecraft launched 11 years ago to visit the two largest objects in the main asteroid belt. Currently, it's in orbit around the dwarf planet Ceres, where it will remain for decades.
"Today, we celebrate the end of our Dawn mission - its incredible technical achievements, the vital science it gave us, and the entire team who enabled the spacecraft to make these discoveries," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "The astounding images and data that Dawn collected from Vesta and Ceres are critical to understanding the history and evolution of our solar system."
Dawn launched in 2007 on a journey that put about 4.3 billion miles (6.9 billion kilometers) on its odometer. Propelled by ion engines, the spacecraft achieved many firsts along the way. In 2011, when Dawn arrived at Vesta, the second largest world in the main asteroid belt, the spacecraft became the first to orbit a body in the region between Mars and Jupiter. In 2015, when Dawn went into orbit around Ceres, a dwarf planet that is also the largest world in the asteroid belt, the mission became the first to visit a dwarf planet and go into orbit around two destinations beyond Earth.
"The fact that my car's license plate frame proclaims, 'My other vehicle is in the main asteroid belt,' shows how much pride I take in Dawn," said Mission Director and Chief Engineer Marc Rayman at NASA's Jet Propulsion Laboratory. "The demands we put on Dawn were tremendous, but it met the challenge every time. It's hard to say goodbye to this amazing spaceship, but it's time."
The data Dawn beamed back to Earth from its four science experiments enabled scientists to compare two planet-like worlds that evolved very differently. Among its accomplishments, Dawn showed how important location was to the way objects in the early solar system formed and evolved. Dawn also reinforced the idea that dwarf planets could have hosted oceans over a significant part of their history - and potentially still do.
"In many ways, Dawn's legacy is just beginning," said Principal Investigator Carol Raymond at JPL. "Dawn's data sets will be deeply mined by scientists working on how planets grow and differentiate, and when and where life could have formed in our solar system. Ceres and Vesta are important to the study of distant planetary systems, too, as they provide a glimpse of the conditions that may exist around young stars."
Because Ceres has conditions of interest to scientists who study chemistry that leads to the development of life, NASA follows strict planetary protection protocols for the disposal of the Dawn spacecraft. Dawn will remain in orbit for at least 20 years, and engineers have more than 99 percent confidence the orbit will last for at least 50 years.
So, while the mission plan doesn't provide the closure of a final, fiery plunge - the way NASA's Cassini spacecraft ended last year, for example - at least this is certain: Dawn spent every last drop of hydrazine making science observations of Ceres and radioing them back so we could learn more about the solar system we call home.
The Dawn mission is managed by JPL for NASA's Science Mission Directorate in Washington. Dawn is a project of the directorate's Discovery Program, managed by NASA's Marshall Space Flight Center in Huntsville, Alabama. JPL is responsible for overall Dawn mission science. Northrop Grumman in Dulles, Virginia, designed and built the spacecraft. The German Aerospace Center, Max Planck Institute for Solar System Research, Italian Space Agency and Italian National Astrophysical Institute are international partners on the mission team.
The Dawn media toolkit, with a mission timeline, images, video and quick facts, is available here:
https://dawn.jpl.nasa.gov/mission/toolkit
Watch the video "Dawn: Mission to Small Worlds," with NASA Chief Scientist Jim Green, at:
https://www.youtube.com/watch?v=JrafypeEhTM
More information about Dawn is available at:
News Media Contact
Dwayne Brown / JoAnna Wendel
Headquarters, Washington
202-358-1726 / 202-358-1003
dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
gretchen.p.mccartney@jpl.nasa.gov
2018-256
from News and Features https://ift.tt/2ziy425
via IFTTT
NASA’s Dawn Mission to Asteroid Belt Comes to End
from NASA Breaking News https://ift.tt/2PBPG2U
via IFTTT
NASA Astronaut Anne McClain Available for Interviews Before First Spaceflight
from NASA Breaking News https://ift.tt/2Qc8LpJ
via IFTTT
Five Things to Know About InSight's Mars Landing
Every Mars landing is a knuckle-whitening feat of engineering. But each attempt has its own quirks based on where a spacecraft is going and what kind of science the mission intends to gather.
On Nov. 26, NASA will try to safely set a new spacecraft on Mars. InSight is a lander dedicated to studying the deep interior of the planet - the first mission ever to do so.
Here are a few things to know about InSight's landing.
Landing on Mars is hard
Only about 40 percent of the missions ever sent to Mars - by any space agency - have been successful. The U.S. is the only nation whose missions have survived a Mars landing. The thin atmosphere - just 1 percent of Earth's - means that there's little friction to slow down a spacecraft. Despite that, NASA has had a long and successful track record at Mars. Since 1965, it has flown by, orbited, landed on and roved across the surface of the Red Planet.
When NASA's InSight descends to the Red Planet on Nov. 26, 2018, it is guaranteed to be a white-knuckle event. Rob Manning, chief engineer at NASA's Jet Propulsion Laboratory, explains the critical steps that must happen in perfect sequence to get the robotic lander safely to the surface.
InSight uses tried-and-true technology
In 2008, NASA's Jet Propulsion Laboratory in Pasadena, California, successfully landed the Phoenix spacecraft at Mars' North Pole. InSight is based on the Phoenix spacecraft, both of which were built by Lockheed Martin Space in Denver. Despite tweaks to its heat shield and parachute, the overall landing design is still very much the same: After separating from a cruise stage, an aeroshell descends through the atmosphere. The parachute and retrorockets slow the spacecraft down, and suspended legs absorb some shock from the touchdown.
InSight is landing on "the biggest parking lot on Mars"
One of the benefits of InSight's science instruments is that they can record equally valuable data regardless of where they are on the planet. That frees the mission from needing anything more complicated than a flat, solid surface (ideally with few boulders and rocks). For the mission's team, the landing site at Elysium Planitia is sometimes thought as "the biggest parking lot on Mars."
InSight was built to land in a dust storm
InSight's engineers have built a tough spacecraft, able to touch down safely in a dust storm if it needs to. The spacecraft's heat shield is designed to be thick enough to withstand being "sandblasted" by dust. Its parachute has suspension lines that were tested to be stronger than Phoenix's, in case it faces more air resistance due to the atmospheric conditions expected during a dust storm.
The entry, descent and landing sequence also has some flexibility to handle shifting weather. The mission team will be receiving daily weather updates from NASA's Mars Reconnaissance Orbiter in the days before landing so that they can tweak when InSight's parachute deploys and when it uses radar to find the Martian surface.
After landing, InSight will provide new science about rocky planets
InSight will teach us about the interior of planets like our own. The mission team hopes that by studying the deep interior of Mars, we can learn how other rocky worlds, including Earth and the Moon, formed. Our home planet and Mars were molded from the same primordial stuff more than 4.5 billion years ago but then became quite different. Why didn't they share the same fate?
When it comes to rocky planets, we've only studied one in detail: Earth. By comparing Earth's interior to that of Mars, InSight's team members hope to better understand our solar system. What they learn might even aid the search for Earth-like exoplanets, narrowing down which ones might be able to support life. So while InSight is a Mars mission, it's also much more than a Mars mission.
You can read more about how the science of the mission is unique here. A press kit released today includes additional information on the mission.
JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.
A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Polish Space Agency (CBK) and Astronika in Poland. Spain's Centro de AstrobiologÃa (CAB) supplied the wind sensors.
Read more about InSight here:
https://mars.nasa.gov/insight/
News Media Contact
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
2018-255
from News and Features https://ift.tt/2ET0LZj
via IFTTT
Wednesday, 31 October 2018
NASA Invites Media to 16th SpaceX Cargo Launch to Space Station
from NASA Breaking News https://ift.tt/2DbSnTn
via IFTTT
NASA Retires Kepler Space Telescope, Passes Planet-Hunting Torch
from NASA Breaking News https://ift.tt/2qjslF2
via IFTTT
NASA Retires Kepler Space Telescope
After nine years in deep space collecting data that indicate our sky to be filled with billions of hidden planets - more planets even than stars - NASA's Kepler space telescope has run out of fuel needed for further science operations. NASA has decided to retire the spacecraft within its current, safe orbit, away from Earth. Kepler leaves a legacy of more than 2,600 planet discoveries from outside our solar system, many of which could be promising places for life.
"As NASA's first planet-hunting mission, Kepler has wildly exceeded all our expectations and paved the way for our exploration and search for life in the solar system and beyond," said Thomas Zurbuchen, associate administrator of NASA's Science Mission Directorate in Washington. "Not only did it show us how many planets could be out there, it sparked an entirely new and robust field of research that has taken the science community by storm. Its discoveries have shed a new light on our place in the universe, and illuminated the tantalizing mysteries and possibilities among the stars."
Kepler has opened our eyes to the diversity of planets that exist in our galaxy. The most recent analysis of Kepler's discoveries concludes that 20 to 50 percent of the stars visible in the night sky are likely to have small, possibly rocky, planets similar in size to Earth, and located within the habitable zone of their parent stars. That means they're located at distances from their parent stars where liquid water - a vital ingredient to life as we know it - might pool on the planet surface.
The most common size of planet Kepler found doesn't exist in our solar system - a world between the size of Earth and Neptune - and we have much to learn about these planets. Kepler also found nature often produces jam-packed planetary systems, in some cases with so many planets orbiting close to their parent stars that our own inner solar system looks sparse by comparison.
"When we started conceiving this mission 35 years ago, we didn't know of a single planet outside our solar system," said the Kepler mission's founding principal investigator, William Borucki, now retired from NASA's Ames Research Center in California's Silicon Valley. "Now that we know planets are everywhere, Kepler has set us on a new course that's full of promise for future generations to explore our galaxy."
Launched on March 6, 2009, the Kepler space telescope combined cutting-edge techniques in measuring stellar brightness with the largest digital camera outfitted for outer space observations at that time. Originally positioned to stare continuously at 150,000 stars in one star-studded patch of the sky in the constellation Cygnus, Kepler took the first survey of planets in our galaxy and became the agency's first mission to detect Earth-size planets in the habitable zones of their stars.
"The Kepler mission was based on a very innovative design. It was an extremely clever approach to doing this kind of science," said Leslie Livesay, director for astronomy and physics at NASA's Jet Propulsion Laboratory, who served as Kepler project manager during mission development. "There were definitely challenges, but Kepler had an extremely talented team of scientists and engineers who overcame them."
Four years into the mission, after the primary mission objectives had been met, mechanical failures temporarily halted observations. The mission team was able to devise a fix, switching the spacecraft's field of view roughly every three months. This enabled an extended mission for the spacecraft, dubbed K2, which lasted as long as the first mission and bumped Kepler's count of surveyed stars up to more than 500,000.
The observation of so many stars has allowed scientists to better understand stellar behaviors and properties, which is critical information in studying the planets that orbit them. New research into stars with Kepler data also is furthering other areas of astronomy, such as the history of our Milky Way galaxy and the beginning stages of exploding stars called supernovae that are used to study how fast the universe is expanding. The data from the extended mission were also made available to the public and science community immediately, allowing discoveries to be made at an incredible pace and setting a high bar for other missions. Scientists are expected to spend a decade or more in search of new discoveries in the treasure trove of data Kepler provided.
"We know the spacecraft's retirement isn't the end of Kepler's discoveries," said Jessie Dotson, Kepler's project scientist at NASA's Ames Research Center in California's Silicon Valley. "I'm excited about the diverse discoveries that are yet to come from our data and how future missions will build upon Kepler's results."
Before retiring the spacecraft, scientists pushed Kepler to its full potential, successfully completing multiple observation campaigns and downloading valuable science data even after initial warnings of low fuel. The latest data, from Campaign 19, will complement the data from NASA's newest planet hunter, the Transiting Exoplanet Survey Satellite, launched in April. TESS builds on Kepler's foundation with fresh batches of data in its search of planets orbiting some 200,000 of the brightest and nearest stars to the Earth, worlds that can later be explored for signs of life by missions such as NASA's James Webb Space Telescope.
NASA's Ames Research Center manages the Kepler and K2 missions for NASA's Science Mission Directorate. NASA's Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation in Boulder, Colorado, operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
For the Kepler press kit, which includes multimedia, timelines and top science results, visit:
https://www.nasa.gov/kepler/presskit
For more information about the Kepler mission, visit:
News Media Contact
Felicia Chou
Headquarters, Washington
202-358-0257
felicia.chou@nasa.gov
Alison Hawkes
Ames Research Center, California's Silicon Valley
650-604-4789
alison.hawkes@nasa.gov
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-1821
calla.e.cofield@jpl.nasa.gov
2018-254
from News and Features https://ift.tt/2SvdlAV
via IFTTT
Tuesday, 30 October 2018
NASA to Hold Media Call on Status of Kepler Space Telescope Today
from NASA Breaking News https://ift.tt/2yP2w4D
via IFTTT
The 'Claw Game' on Mars: NASA InSight Plays to Win
Click here to read about Frances Arnold's Nobel Prize.
"What the heck does Mom want? Oh, Mom probably doesn't understand the time difference, she's in Dallas right now and is probably still thinking it's California time...maybe she just wants me to go check on her cats..." A litany of mundane explanations ran through James Bailey's bleary mind at 3:23 a.m. on October 3 when he was awakened from a deep sleep by three phone calls from his mother's cell number. Bailey silenced his phone for the first two, getting grumpier with each ring. Call #3 did the trick. He picked up the phone and said groggily, "What do you want?" With great excitement and maybe a tinge of impatience, his mother said, "I wish you had picked up your phone, but I just won the Nobel Prize."
Bailey bolted upright, thrilled by the news and fueled by adrenaline. "I was overjoyed for her. It's fairly difficult to verbalize how I feel," he said. He never did manage to go back to sleep that night. In a few hours, he'd be able to share the news with his colleagues when he arrived at his job at NASA's Jet Propulsion Laboratory in Building 179, High Bay 1 -- the clean room where he is a flight technician working on Mars 2020.
Bailey's mother is Frances Arnold, the Linus Pauling Professor of Chemical Engineering at Caltech, which manages JPL for NASA. Her 2018 Nobel Prize in Chemistry honors her pioneering work in creating new, improved enzymes in the laboratory using the principles of evolution. Arnold shares the prize with two other scientists.
Arnold's bio has an abundance of academic milestones and stellar awards. She was the first woman to receive the 2011 Charles Stark Draper Prize from the National Academy of Engineering. She is also the first woman and one of just a few individuals elected to all three branches of the National Academies: for Medicine, Sciences and Engineering.
Bailey traveled a different path than his mother to his job at JPL. Growing up in Pasadena, he didn't thrive in conventional schools, so he pursued vocational training in welding and machining. After high school, he worked on high-performance cars at a local shop. At 20, he joined the Army, where he was trained as a Blackhawk helicopter mechanic and became part of a flight crew. After wrapping up six years of military service, including crucial work on medical evacuation helicopter teams in Afghanistan, he learned JPL was looking for people with an aviation background to work as flight technicians. Bailey fit the bill, and he was hired.
"If you do something wrong in aviation, lives are at stake, and that same level of detail needs to be taken here, because we send spacecraft that we can't repair, so they have to be perfect the first time," Bailey said.
Eventually, Bailey hopes to continue his education in aerospace and mechanical engineering. After all, engineering and science are a family tradition. In addition to his mother's career, his biological father, James E. Bailey, was a chemistry professor at ETH Zurich, and his stepfather, Andrew Lange, was a Caltech professor of astrophysics. His mother's father was a nuclear engineer, one of her brothers worked on developing microprocessors, and her other brother is a professor who conducts cancer research at Rutgers University.
Bailey has vivid childhood memories of visiting Caltech labs with his parents, which he believes pushed him toward science and mechanics. But he added, "I really think it's genetic." And in his family, that affinity for STEM fields is shared by men and women.
Bailey met a lot of female students and professors through his parents. "When I first heard about the struggles of women and STEM, I was a little surprised, like, 'This is really a thing?' That's because I had a small, biased view of it, being surrounded by brilliant female engineers and professors."
Bailey said that since the Nobel Prize announcement, his mother has received a massive influx of bottles of Champagne, flower deliveries and phone calls, plus group emails from every corner of the family. When Arnold goes to the official Nobel ceremony in Sweden in December, she will be accompanied by her family, and she will bring her graduate students to express gratitude for all they've done and to inspire them to pursue their dreams.
"My mom would want everybody to know that it's a collaboration of everyone to achieve these big goals," Bailey said. He has seen firsthand the value of collaborations in his mother's career and in his own. "The beautiful balance of working here at JPL is that you have some of the most brilliant minds from all backgrounds, whether technical or theoretical, you have the camaraderie of the sharpest technicians and others working with some of the smartest engineers, and they find the perfect balance of making it all work," he explained.
When Bailey is not at work sporting a bunny suit in a clean room, he is mentoring his younger brother who wants to be a machinist, remodeling a house, and restoring classic cars -- a '66 Chevelle and a '71 Blazer.
"I've always got to keep a wrench in my hands, so I work on the rover during the day, and I work on my projects at night, but I need to be mechanically involved," Bailey said.
News Media Contact
DC Agle / Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011 / 393-2433
agle@jpl.nasa.gov / Andrew.c.good@jpl.nasa.gov
Written by Jane Platt
2018-241
from News and Features https://ift.tt/2zaoA92
via IFTTT
The Coincidence Between Two Overachieving NASA Missions
Two vastly different NASA spacecraft are about to run out of fuel: The Kepler spacecraft, which spent nine years in deep space collecting data that detected thousands of planets orbiting stars outside our solar system, and the Dawn spacecraft, which spent 11 years orbiting and studying the main asteroid belt's two largest objects, Vesta and Ceres.
However, the two record-setting missions have more in common than their coincidentally low fuel levels. Both missions gathered data that broke new scientific ground, searching for answers inside and outside our solar system.
Launched in 2007, Dawn was the first spacecraft to orbit a body between Mars and Jupiter, and the first to orbit more than one deep-space destination. From 2011 to 2012, Dawn studied the asteroid Vesta before pulling off an unprecedented maneuver by leaving orbit and traveling to the dwarf planet Ceres, which it observed for over 3.5 years. Dawn will remain in a stable orbit around Ceres for decades. Among its many findings, Dawn helped scientists discover organics on Ceres and evidence that dwarf planets could have hosted oceans over a significant part of their history - and possibly still do.
Kepler, meanwhile, launched in 2009 and revealed that there is statistically at least one planet around every star in our galaxy. It also opened our eyes to the variety of worlds beyond our solar system, with its discovery of more than 2,600 planets orbiting other stars. Among these worlds are rocky, Earth-sized planets, some of which orbit within their stars' habitable zones, where liquid water could pool on the surface. Kepler also characterized a class of planets that don't exist in our solar system: worlds between the sizes of Earth and Neptune, or "super-Earths."
Both missions were extended past their originally anticipated lifetime because of the innovative work of their engineers and scientists. In 2016, Dawn's mission at Ceres was extended. In 2017, its mission at Ceres was extended again to study the dwarf planet from altitudes as low as 22 miles (35 kilometers) above Ceres' surface, with the main goal of understanding the evolution of Ceres and possibly active geology.
In 2012, Kepler completed its primary mission and was awarded an extension. After the failure of a second gyroscope that kept the spacecraft steady in 2013, clever engineers found a way to use solar pressure to keep the spacecraft temporarily pointed in a desired direction. Starting in 2014, this new mission was dubbed K2. It has been running ever since, gathering science from 19 different patches of sky with populations of stars, galaxies and solar system objects.
Both missions, with their vastly distinct data sets, have given scientists here on Earth a lot to think about. From Dawn's mission, we found that Ceres may still be geologically active and could have had briny water rising and depositing salts on its surface. From Kepler's mission, we learned that planets are more common than stars in our galaxy and that many of them could be promising for life as we know it. It also showed us the diversity of planets and planetary systems out there, some of which are very different than ours.
As we prepare to say goodbye to these two record-breaking missions, we rejoice in the fact that discoveries will still arise from their data decades into the future.
News Media Contact
Gretchen McCartney
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-6215
Gretchen.p.mccartney@jpl.nasa.gov
JoAnna Wendel / Felicia Chou
NASA Headquarters, Washington
202-358-1003/ 202-358-0257
joanna.r.wendel@nasa.gov / felicia.chou@nasa.gov
2018-251
from News and Features https://ift.tt/2CODPbe
via IFTTT
NASA Launches a New Podcast to Mars
NASA has a new mission to Mars, and it's taking podcast listeners along for the ride.
Launching today, the eight-episode series "On a Mission" follows the InSight lander as it travels hundreds of millions of miles and attempts to land on Mars on Nov. 26. "On a Mission" will be the first JPL podcast to track a mission during flight, through interviews with the InSight team at NASA's Jet Propulsion Laboratory in Pasadena, California.
The first two episodes are available now at NASA, the InSight website, SoundCloud and Apple Podcasts. Episode One lays out the odds of reaching the surface safely - fewer than half of Mars missions make it.
"When things go beautifully it looks easy, but it's really not easy," said Sue Smrekar, deputy principal investigator for the InSight mission. "Any kind of exploration is just not easy or guaranteed - ever."
Narrated by host and science journalist Leslie Mullen and InSight team members, each episode blends humor and captivating storytelling to dig into the journey of the lander and the people who have spent years working on it. New episodes, running between 20 and 30 minutes, will be released weekly as InSight gets closer to Mars. The final episode will cover what happens when the team tries to land InSight on the Red Planet.
If successful, the lander will be the first robotic explorer to study the planet's "inner space" - its crust, mantle and core - in an effort to better understand the early formation of rocky planets in our inner solar system (Mercury, Venus, Earth and Mars) and rocky exoplanets.
Future seasons of the podcast will focus on different missions and take listeners on new journeys through the universe.
For the latest InSight updates, follow the mission on Facebook and Twitter.
To download and listen to "On a Mission" and other NASA podcasts, visit:
To learn more about InSight, visit:
https://mars.nasa.gov/insight/
News Media Contact
Arielle Samuelson
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307
arielle.a.samuelson@jpl.nasa.gov
2018-250
from News and Features https://ift.tt/2qiE4DN
via IFTTT
Mars 2020 Parachute a Go
In the early hours of Sept. 7, NASA broke a world record.
Less than 2 minutes after the launch of a 58-foot-tall (17.7-meter) Black Brant IX sounding rocket, a payload separated and began its dive back through Earth's atmosphere. When onboard sensors determined the payload had reached the appropriate height and Mach number (38 kilometers altitude, Mach 1.8), the payload deployed a parachute. Within four-tenths of a second, the 180-pound parachute billowed out from being a solid cylinder to being fully inflated.
It was the fastest inflation in history of a parachute this size and created a peak load of almost 70,000 pounds of force.
This wasn't just any parachute. The mass of nylon, Technora and Kevlar fibers that make up the parachute will play an integral part in landing NASA's state-of-the-art Mars 2020 rover on the Red Planet in February 2021. The Jet Propulsion Laboratory's Advanced Supersonic Parachute Inflation Research Experiment (ASPIRE) project conducted a series of sounding rocket tests to help decide which parachute design to use on the Mars 2020 mission.
Two different parachutes were evaluated during ASPIRE. The first test flight carried almost an exact copy of the parachute used to land NASA's Mars Science Laboratory.
On Oct. 3, NASA's Mars 2020 mission management and members of its Entry, Descent, and Landing team met at JPL in Pasadena, California, and determined that the strengthened parachute had passed its tests and was ready for its Martian debut.
"Mars 2020 will be carrying the heaviest payload yet to the surface of Mars, and like all our prior Mars missions, we only have one parachute and it has to work," said John McNamee, project manager of Mars 2020 at JPL. "The ASPIRE tests have shown in remarkable detail how our parachute will react when it is first deployed into a supersonic flow high above Mars. And let me tell you, it looks beautiful."
The 67,000-pound (37,000-kilogram) load was the highest ever survived by a supersonic parachute. That's about an 85-percent higher load than what scientists would expect the Mars 2020 parachute to encounter during its deployment in Mars' atmosphere.
"Earth's atmosphere near the surface is much denser than that near the Martian surface, by about 100 times," said Ian Clark, the test's technical lead from JPL. "But high up - around 23 miles (37 kilometers) - the atmospheric density on Earth is very similar to 6 miles (10 kilometers) above Mars, which happens to be the altitude that Mars 2020 will deploy its parachute."
With the ASPIRE tests complete, the endeavors of Clark and his compatriots will be confined to the lower part of the stratosphere for the time being. But that doesn't mean the fun times are over.
"We are all about helping 2020 stick its landing 28 months from now," said Clark. "I may not get to shoot rockets to the edge of space for a while, but when it comes to Mars - and when it comes to getting there and getting down there safely - there are always exciting challenges to work on around here."
The Mars 2020 project's parachute-testing series, ASPIRE, is managed by the Jet Propulsion Laboratory, with support from NASA's Langley Research Center in Hampton, Virginia, and NASA's Ames Research Center in Mountain View, California, for NASA's Space Science Mission Directorate. NASA's Sounding Rocket Program is based at the agency's Wallops Flight Facility on Wallops Island, Virginia. Northrop Grumman provides mission planning, engineering services and field operations through the NASA Sounding Rocket Operations Contract. NASA's Heliophysics Division manages the sounding-rocket program for the agency.
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
JoAnna Wendel
NASA Headquarters, Washington
202-358-1003
joanna.r.wendel@nasa.gov
Keith Koehler
NASA's Wallops Flight Facility, Wallops Island, Va.
757-824-1579
keith.a.koehler@nasa.gov
2018-249
from News and Features https://ift.tt/2CQ7C3l
via IFTTT
Here's What Happens When NASA Has a Pumpkin-Carving Contest
While it may not be your typical Halloween fare, a pumpkin held aloft by a parachute and an air blower is par for the course when engineers engage in a pumpkin carving contest at NASA's Jet Propulsion Laboratory in Pasadena, California.
Once a year at Halloween, JPLers take a break from building robots that explore the solar system to craft dramatic creations that have as much in common with standard jack-o'-lanterns as paper airplanes do with NASA spacecraft. Now in its seventh year, the unofficial pumpkin carving contest gives engineers a chance to flex their creative muscles and bond as a team, said NASA mechanical engineer Mike Meacham, who is co-running the one-hour competition this year.
A pumpkin flies, after being engineered by Mike Meacham and his JPL team in the 2017 contest.
Image Credit: NASA/JPL-Caltech
"I don't think, even at the time, they appreciated just how seriously our engineers were going to take it," he said of the first contest. In 2017, Meacham - who works on the entry, descent and landing of the Mars 2020 rover - and his team won third place with a green Frankenstein gourd that hovered in mid-air, suspended by a mini-parachute and an air blower.
Other past standouts include a team that transformed a pumpkin into a twinkling UFO in the midst of beaming up a (miniature) cow. Another team turned their pumpkin into a spinning carnival-swing ride, while a third created a robotic arm that could flip a light switch on and off.
A shy pumpkin turns off its lights in JPL's 2016 pumpkin carving contest.
Image Credit: NASA/JPL-Caltech
Displayed together in a dark room, the creations flicker, lurch, glow and make noise in ways that defy the imagination. A panel of judges awards the first-place pumpkin the same day. The prize? Victory itself.
The rules are simple: no planning, carving or competing during work hours.
"They do it all in their own time," said Meacham, who's been brainstorming his ideas for six months. "They go home, use their own resources, plan it out, and all we give them is a pumpkin."
Iona Brockie, an engineer on the Mars 2020 rover, said the contest gives her a chance to admire the talent of her colleagues. After two years of placing second, her team took first last year, with a celestial pirate ship that sailed past Jupiter on an ocean of dry ice. Inspired by NASA's future mission to Jupiter's icy moon Europa, Brockie and her teammates used their mechanical engineering know-how to plan out every step of their hour-long effort, down to five-minute intervals.
"Everyone gets so excited about this competition that has no prize other than bragging rights," said Brockie, who also helped build the cow-abduction pumpkin. "It's fun to see everybody bring the same kind of crazy energy that they do to making the flight projects to something as simple as a pumpkin carving contest."
JPL engineers created a spinning pumpkin carousel in the 2016 Halloween contest.
Image Credit: NASA/JPL-Caltech
This year's contest takes place on Oct. 29, from 10 a.m. to 11 a.m. PDT, during the engineering section's lunch break. The winners will be named in the afternoon.
The event will be covered live on NASA JPL's social media accounts. Photos and video will be posted on NASA JPL's Flickr account the same day.
News Media Contact
Arielle Samuelson
Jet Propulsion Laboratory, Pasadena, Calif.
818-354-0307
arielle.a.samuelson@jpl.nasa.gov
2018-248
from News and Features https://ift.tt/2qgdoU7
via IFTTT
NASA to Host Briefing on November Mars InSight Landing
NASA's upcoming landing of the first-ever mission to study the heart of Mars will be the topic of a media briefing at 1:30 p.m. EDT (10:30 a.m. PDT) Wednesday, Oct. 31 at NASA Headquarters in Washington. The briefing will air live on NASA Television, the agency's website and the NASA InSight Facebook page.
NASA's InSight Mars Lander (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) will land on the Red Planet at approximately 3 p.m. EST (noon PST) Monday, Nov. 26. InSight will study the deep interior of Mars to learn how all rocky planets, including Earth and its Moon, formed. The lander's instruments include a seismometer to detect marsquakes and a probe to monitor the flow of heat in the planet's subsurface.
Briefing participants include:
- Lori Glaze, acting director of the Planetary Science Division, NASA Headquarters, Washington
- Bruce Banerdt, InSight principal investigator, NASA's Jet Propulsion Laboratory, Pasadena, California
- Tom Hoffman, InSight project manager at JPL
- Sue Smrekar, InSight deputy principal investigator at JPL
- Jaime Singer, InSight instrument deployment lead at JPL
The public can ask questions on Twitter using the hashtag #askNASA or by leaving a comment on the stream of the event on the NASA InSight Facebook page.
For more information about InSight, visit:
Follow the mission on Twitter at:
https://twitter.com/nasainsight
News Media Contact
Dwayne Brown / JoAnna Wendel
NASA Headquarters, Washington
202-358-1726 / 202-358-1003
dwayne.c.brown@nasa.gov / joanna.r.wendel@nasa.gov
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
2018-247B
from News and Features https://ift.tt/2CPe4rd
via IFTTT
NASA's InSight Will Study Mars While Standing Still
You don't need wheels to explore Mars.
After touching down in November, NASA's InSight spacecraft will spread its solar panels, unfold a robotic arm ... and stay put. Unlike the space agency's rovers, InSight is a lander designed to study an entire planet from just one spot.
This sedentary science allows InSight to detect geophysical signals deep below the Martian surface, including marsquakes and heat. Scientists will also be able to track radio signals from the stationary spacecraft, which vary based on the wobble in Mars' rotation. Understanding this wobble could help solve the mystery of whether the planet's core is solid.
Here are five things to know about how InSight conducts its science.
1. InSight Can Measure Quakes Anywhere on the PlanetQuakes on Earth are usually detected using networks of seismometers. InSight has only one - called SEIS (Seismic Experiment for Interior Structure) - so its science team will use some creative measurements to analyze seismic waves as they occur anywhere on the planet.
SEIS will measure seismic waves from marsquakes and meteorite strikes as they move through Mars. The speed of those waves changes depending on the material they're traveling through, helping scientists deduce what the planet's interior is made of.
Seismic waves come in a surprising number of flavors. Some vibrate across a planet's surface, while others ricochet off its center. They also move at different speeds. Seismologists can use each type as a tool to triangulate where and when a seismic event has happened.
This means InSight could have landed anywhere on Mars and, without moving, gathered the same kind of science.
2. InSight's Seismometer Needs Peace and QuietSeismometers are touchy by nature. They need to be isolated from "noise" in order to measure seismic waves accurately.
SEIS is sensitive enough to detect vibrations smaller than the width of a hydrogen atom. It will be the first seismometer ever set on the Martian surface, where it will be thousands of times more accurate than seismometers that sat atop the Viking landers.
To take advantage of this exquisite sensitivity, engineers have given SEIS a shell: a wind-and-thermal shield that InSight's arm will place over the seismometer. This protective dome presses down when wind blows over it; a Mylar-and-chainmail skirt keeps wind from blowing in. It also gives SEIS a cozy place to hide away from Mars' intense temperature swings, which can create minute changes in the instrument's springs and electronics.
3. InSight Has a Self-Hammering NailHave you ever tried to hammer a nail? Then you know holding it steady is key. InSight carries a nail that also needs to be held steady.
This unique instrument, called HP3 (Heat Flow and Physical Properties Package), holds a spike attached to a long tether. A mechanism inside the spike will hammer it up to 16 feet (5 meters) underground, dragging out the tether, which is embedded with heat sensors.
At that depth, it can detect heat trapped inside Mars since the planet first formed. That heat shaped the surface with volcanoes, mountain ranges and valleys. It may even have determined where rivers ran early in Mars' history.
4. InSight Can Land in a Safe SpotBecause InSight needs stillness - and because it can collect seismic and heat data from anywhere on the planet - the spacecraft is free to land in the safest location possible.
InSight's team selected a location on Mars' equator called Elysium Planitia - as flat and boring a spot as any on Mars. That makes landing just a bit easier, as there's less to crash into, fewer rocks to land on and lots of sunlight to power the spacecraft. The fact that InSight doesn't use much power and should have plenty of sunlight at Mars' equator means it can provide lots of data for scientists to study.
5. InSight Can Measure Mars' WobbleInSight has two X-band antennas on its deck that make up a third instrument, called RISE (Rotation and Interior Structure Experiment). Radio signals from RISE will be measured over months, maybe even years, to study the tiny "wobble" in the rotation of the planet. That wobble is a sign of whether Mars' core is liquid or solid - a trait that could also shed light on the planet's thin magnetic field.
Collecting detailed data on this wobble hasn't happened since Mars Pathfinder's three-month mission in 1997 (although the Opportunity rover made a few measurements in 2011 while it remained still, waiting out the winter). Every time a stationary spacecraft sends radio signals from Mars, it can help scientists improve their measurements.
About InSight
JPL manages InSight for NASA's Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by the agency's Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.
A number of European partners, including France's Centre National d'Études Spatiales (CNES) and the German Aerospace Center (DLR), support the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument, with significant contributions from the Max Planck Institute for Solar System Research (MPS) in Germany, the Swiss Institute of Technology (ETH) in Switzerland, Imperial College and Oxford University in the United Kingdom, and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument.
For more information about InSight, visit:
https://mars.nasa.gov/insight/
News Media Contact
Andrew Good
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-2433
andrew.c.good@jpl.nasa.gov
2018-246
from News and Features https://ift.tt/2qgqnW7
via IFTTT
Newborn Stars Blow Bubbles in the Cat's Paw Nebula
This image from NASA's Spitzer Space Telescope shows the Cat's Paw Nebula, so named for the large, round features that create the impression of a feline footprint. The nebula is a star-forming region in the Milky Way galaxy, located in the constellation Scorpius. Estimates of its distance from Earth range from about 4,200 to about 5,500 light-years.
Framed by green clouds, the bright red bubbles are the dominant feature in the image, which was created using data from two of Spitzer's instruments. After gas and dust inside the nebula collapse to form stars, the stars may in turn heat up the pressurized gas surrounding them, causing it to expand into space and create bubbles.
The green areas show places where radiation from hot stars collided with large molecules called "polycyclic aromatic hydrocarbons," causing them to fluoresce.
In some cases, the bubbles may eventually "burst," creating the U-shaped features that are particularly visible in the image below, which was created using data from just one of Spitzer's instruments.
The Cat's Paw Nebula, imaged here by NASA's Spitzer Space Telescope using the IRAC instrument, is a star-forming region inside the Milky Way Galaxy. The dark filament running through the middle of the nebula is a particularly dense region of gas and dust. Image Credit: NASA/JPL-Caltech
Larger view
Spitzer is an infrared telescope, and infrared light is useful to astronomers because it can penetrate thick clouds of gas and dust better than optical light (the kind visible to the human eye). The black filaments running horizontally through the nebula are regions of gas and dust so dense, not even infrared light can pass through them. These dense regions may soon be sites where another generation of stars will form.
The Cat's Paw star-forming region is estimated to be between 24 and 27 parsecs (80 and 90 light years) across. It extends beyond the left side of these images and intersects with a similar-sized star-forming region, NGC 6357. That region is also known as the Lobster Nebula - an unlikely companion for a cat.
The top image was compiled using data from the Infrared Array Camera (IRAC) and the Multiband Imaging Photometer (MIPS) aboard Spitzer. MIPS collects an additional "color" of light in the infrared range, which reveals the red-colored features, created by dust that has been warmed by the hot gas and the light from nearby stars. The second image is based on data from IRAC alone, so this dust is not visible.
The images were pulled from data collected for the Galactic Legacy Mid-Plane Survey Extraordinaire project (GLIMPSE). Using data from Spitzer, GLIMPSE created the most accurate map ever of the large central bar of the galaxy and showed that the galaxy is riddled with gas bubbles like those seen here.
More information about Spitzer is available at the following sites:
http://www.spitzer.caltech.edu/
https://irsa.ipac.caltech.edu/data/SPITZER/GLIMPSE/overview.htmlNews Media Contact
Calla Cofield
Jet Propulsion Laboratory, Pasadena, Calif.
626-808-2469
calla.e.cofield@jpl.nasa.gov
2018-244
from News and Features https://ift.tt/2COOp1H
via IFTTT
NASA's Juno Mission Detects Jupiter Wave Trains
Massive structures of moving air that appear like waves in Jupiter's atmosphere were first detected by NASA's Voyager missions during their flybys of the gas-giant world in 1979. The JunoCam camera aboard NASA's Juno mission to Jupiter has also imaged the atmosphere. JunoCam data has detected atmospheric wave trains, towering atmospheric structures that trail one after the other as they roam the planet, with most concentrated near Jupiter's equator.
The JunoCam imager has resolved smaller distances between individual wave crests in these trains than ever seen before. This research provides valuable information on both the dynamics of Jupiter's atmosphere and its structure in the regions underneath the waves.
"JunoCam has counted more distinct wave trains than any other spacecraft mission since Voyager," said Glenn Orton, a Juno scientist from NASA's Jet Propulsion Laboratory in Pasadena, California. "The trains, which consist of as few as two waves and as many as several dozen, can have a distance between crests as small as about 40 miles (65 kilometers) and as large as about 760 miles (1,200 kilometers). The shadow of the wave structure in one image allowed us to estimate the height of one wave to be about 6 miles (10 kilometers) high."
Most of the waves are seen in elongated wave trains, spread out in an east-west direction, with wave crests that are perpendicular to the orientation of the train. Other fronts in similar wave trains tilt significantly with respect to the orientation of the wave train, and still other wave trains follow slanted or meandering paths.
"The waves can appear close to other Jovian atmospheric features, near vortices or along flow lines, and others exhibit no relationship with anything nearby," said Orton. "Some wave trains appear as if they are converging, and others appear to be overlapping, possibly at two different atmospheric levels. In one case, wave fronts appear to be radiating outward from the center of a cyclone."
Although analysis is ongoing, most waves are expected to be atmospheric gravity waves - up-and-down ripples that form in the atmosphere above something that disturbs air flow, such as a thunderstorm updraft, disruptions of flow around other features, or from some other disturbance that JunoCam does not detect.
The JunoCam instrument is uniquely qualified to make such a discovery. JunoCam is a color, visible-light camera which offers a wide-angle field of view designed to capture remarkable pictures of Jupiter's poles and cloud tops. As Juno's eyes, it helps provide context for the spacecraft's other instruments. JunoCam was included on the spacecraft primarily for public engagement purposes, although its images also are helpful to the science team.
Juno launched on Aug. 5, 2011, from Cape Canaveral, Florida, and arrived in orbit around Jupiter on July 4, 2016. To date, it has completed 15 science passes over Jupiter. Juno's 16th science pass will be on Oct. 29. During these flybys, Juno is probing beneath the obscuring cloud cover of Jupiter and studying its auroras to learn more about the planet's origins, structure, atmosphere and magnetosphere.
JPL manages the Juno mission for the principal investigator, Scott Bolton, of Southwest Research Institute in San Antonio. The Juno mission is part of the New Frontiers Program managed by NASA's Marshall Space Flight Center in Huntsville, Alabama, for the Science Mission Directorate. Lockheed Martin Space Systems in Denver, Colorado, built the spacecraft. JPL is a division of Caltech in Pasadena, California.
More information on the Juno mission is available at:
https://www.missionjuno.swri.edu
The public can follow the mission on Facebook and Twitter at:
http://www.facebook.com/NASAJuno
http://www.twitter.com/NASAJuno
News Media Contact
DC Agle
Jet Propulsion Laboratory, Pasadena, Calif.
818-393-9011
agle@jpl.nasa.gov
JoAnna Wendel
NASA Headquarters, Washington
202-358-1003
joanna.r.wendel@nasa.gov
Deb Schmid
Southwest Research Institute, San Antonio
210-522-2254
dschmid@swri.org
2018-245
from News and Features https://ift.tt/2qhx7Tu
via IFTTT
Station Science Top News: Dec. 20, 2024
A method for evaluating thermophysical properties of metal alloys Simulation of the solidification of metal alloys, a key step in certain i...
-
NASA has exercised the second option of its Information Technology and Multimedia Services (ITAMS) contract with DB Consulting Group, Inc., ...
-
NASA's MAVEN spacecraft performed a previously unscheduled maneuver this week to avoid a collision in the near future with Mars' ...