Thursday, 21 November 2024

NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture

14 Min Read

NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture

Map of U.S. Midwest showing corn cultivation in yellow dots against gray background, with several Great Lakes visible.
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow.
Credits:
NASA Earth Observatory/ Lauren Dauphin

Bradley Doorn grew up in his family’s trucking business, which hauled milk and animal feed across the sprawling plains of South Dakota. Home was Mitchell, a small town famous for its Corn Palace, where murals crafted from corn kernels and husks have adorned its facade since 1892—a tribute to the abundance of the surrounding farmland.

Trucking was often grueling work for the family, the day breaking early and ending in headlights. Like farming, driving a truck wasn’t just a job; it was the engine of daily life, thrumming through nearly every conversation and decision.

Brad loved the outdoors, and by the time he started college in the early 1980s, studying geological engineering felt like a natural fit. “I wanted to be out in the field somewhere, working under the big skies of the West,” Brad recalled. But in his sophomore year at the South Dakota School of Mines and Technology, the tuition money dried up.

Man in blue jeans and a short sleeve button down shirt stands in the grass next to a residential street. He stands behind an orange truck with a silver tank on the back used to haul milk in the 1960s and 70s parked mostly in the grass at the side of the road. There are open doors on the back of the truck.
Dean Doorn, Brad Doorn’s father, stands beside a milk truck used in the family’s business of hauling milk across South Dakota in the 1960s and ’70s.
Credit: B. Doorn

Doorn found himself at a crossroads familiar to many in rural America: return to the certainty of a family trade or chart a new route. “That’s when the Army stepped in,” he said. The ROTC program offered a way to continue with school and a path into the world of remote sensing—a field that would come to define his career.

Brad’s choice to join the Army would eventually place him at the forefront of a mapping revolution, equipping him to see and analyze Earth in ways never possible before the advent of satellites. But more than the technical skills, the military showed him the allure of a life anchored to mission and team.

Even as his career took him far from Mitchell, Doorn would remain connected to his rural America roots. Today, he leads NASA’s agriculture programs within the agency’s Earth Science Division. “My family wasn’t made up of farmers, but farming was a part of everything growing up,” said Brad. “Even now, working with NASA, that connection to the land—the sense of how weather, crops, and people are tied together—it’s still in everything I do.”

Amid the dazzle of NASA’s feats exploring the solar system and universe, it’s easy to miss the agency’s quiet work in fields of soy and wheat. But for more than 60 years, the agency has harnessed the power of its satellites to deliver crucial data on temperature, precipitation, crop yields, and more to farmers, policymakers, and food security experts worldwide.

A false-color satellite image showing a patchwork of agricultural fields surrounding a dark blue lake, with green vegetation and grid-like patterns visible across the landscape.
The Landsat 9 satellite captured this false-color image of Louisiana rice fields in February 2023. Dark blue shows flooded areas, while green indicates vegetation. Grid-like levees separate fields pre-planting. Louisiana is the third largest producer of rice in the U.S.
Credit: NASA Earth Observatory/ Lauren Dauphin

From orbit, satellites beam down streams of data—numbers and pixels that, when paired with farmers’ knowledge of the land, can guide growers as they adjust irrigation levels or plan for the next planting. But the satellites don’t just yield data; they tell stories that call for action, enabling nations to brace for droughts, floods, and the prospect of empty grain silos.

“Under Brad’s guidance, NASA’s agriculture program has become a global leader for satellite-driven solutions, tackling food security and sustainability head-on,” said Lawrence Friedl, the senior engagement officer for NASA Earth Science. Reflecting on years of collaboration, he added: “I am so impressed and grateful for what he and his teams have accomplished.”

Boots Meet Satellites in the First Gulf War

Long before Brad began guiding NASA’s agricultural initiatives, he was already navigating tricky terrain, both literal and figurative, with satellite imagery. His career in remote sensing didn’t start with crops, but with the deserts of Iraq and Kuwait.

As part of the Army’s 18th Airborne Corps, Brad led a company at Fort Bragg (now Fort Liberty) in North Carolina that had just returned from operations in the First Gulf War, in the early 1990s. “I loved being part of a unit, part of something bigger than just me,” Brad recalled. “It felt good to have that purpose and mission.”

Far from the combat zone, Doorn’s company became cartographers of the invisible. Their task: merge data from the Landsat satellite with the gritty reality of desert warfare depicted on military maps.

White man sitting at a desk in U.S. Army camouflage uniform. The desk has a pen and various stacks of paperwork and there are shelves behind him with various books and a stereo.
Brad Doorn, then a U.S. Army officer, sits at his desk during his early career in remote sensing. His military experience would later shape his work at NASA, applying satellite technology to real-world challenges.
Credit: B. Doorn

Landsat, a civilian satellite built by NASA and operated by the U.S. Geological Survey, could see what the soldiers on the ground could not. Its thermal infrared sensor—a camera with a penchant for temperature and moisture—read the desert floor like an ancient script, picking out the cold, soggy signature of mud lurking beneath the desert’s deceptive crust. Each pixel of satellite data became a brushstroke in a new kind of map, keeping tanks out of the mire and the missions on track.

“It was so neat to see the remote sensing techniques I’d learned about in school actually making a difference,” Doorn said.

With this knowledge, he helped guide his unit’s shift from analog maps—paper grids and grease pencils—to the emerging world of digital mapping, a leap that sharpened the military’s ability to read the landscape and steer clear of trouble.

From Desert Muck to Farm Fields

Brad’s military experience gave him an early look at how satellite data could address tangible, on-the-ground challenges. In the Army, he saw how integrating satellite data into military maps could offer soldiers critical information. That experience set the foundation for his later work at NASA, where he would help develop technology with lasting, practical impacts.

Consider OpenET, a NASA-funded initiative that uses Landsat data to give farmers insights into water use and irrigation needs at field scale. The ET in OpenET stands not for the little alien who phoned home, but for evapotranspiration. It’s a combination of water evaporating from the ground and water released by plants into the air.

The program relies on the same thermal technology Doorn used during the Gulf War. Just as cooler, wetter areas in the desert hint at muddy spots, cooler patches in farm fields show where there’s more moisture or plants are releasing more water. These data are key to managing water resources wisely and keeping crops healthy.

“OpenET has transformed our understanding of water demand,” explained Doorn.

This map shows evapotranspiration levels across Central California including the Bay Area. Darker blue can be seen in the Central Valley.
To better manage water, state officials and farmers in California are using satellite data through OpenET to track evapotranspiration. Here, the colors represent total evapotranspiration for 2023 as the equivalent depth of water in millimeters. Dark blue regions have higher evapotranspiration rates, such as in the Central Valley.
Credit: NASA Earth Observatory using openetdata.org

In the late 2000s, when a new generation of Landsat satellites was being planned, the thermal infrared imagers were initially left off the drawing board. “Landsat 8’s design caused a lot of consternation in some Western states that were beginning to use the instrument for measuring and monitoring water use,” said Tony Willardson, the executive director of the Western States Water Council, a government entity that advises western governors on water policy.

Brad played a key role in conveying to NASA the critical need for this technology, both for agriculture and water management, Willardson said. The thermal imager was eventually reinstated and has since “helped to close a gap in western water management.”

“A lot of the technologies that we are using more and more were developed by NASA,” said Willardson. “We need NASA to be doing even more in Earth science.”

Sowing Global Food Stability from Space

Brad ended up serving in the Army for nearly a decade. “You hit that 10-year mark in the military, and you sort of have to decide if you’re staying in for 20 or if you’re getting out,” said Brad. “My wife, Kristen, was able to manage her career as a registered dietician through the first four moves in six years, but eventually it was too much. So, I told her: ‘Your choice. You decide where we go next.’”

She chose southern Pennsylvania to be closer to her family. Brad was 32 years old, and the couple had two small children at the time—one of whom had had open-heart surgery at 6 weeks old to fix a heart defect. They would go on to have another child.

In the late 1990s, within a few years of leaving the military, Doorn found himself someplace he had never imagined: sitting behind a desk at the U.S. Department of Agriculture. For a boy who had grown up driving trucks across the plains of South Dakota—who had vowed never to work in an office, much less live east of the Mississippi—this was an unexpected detour. But he had long since learned that the best paths are often the ones you don’t see coming.

At USDA, he moved forward not with a grand plan, but with an instinctive trust in where curiosity and challenge might lead. He rose through the ranks, from a programmer to directing the agency’s international food production analysis program. He was increasingly driven by a conviction that satellite data, if used the right way, could transform how we see the land and the way we feed the world.

While at USDA, and later at NASA, which he joined in 2009, Brad was instrumental in developing and overseeing the Global Agricultural Monitoring (GLAM) system. This real-time interactive satellite platform delivers massive amounts of ready-to-use satellite data directly to USDA crop analysts, eliminating the burden of data processing and enabling them to focus on rapid crop analysis across the globe. It was a pioneering tool, said Inbal Becker-Reshef, a research professor at University of Maryland’s Department of Geographical Sciences, who played a central role in developing the GLAM system.

Brad Doorn gestures while presenting satellite imagery on a large digital display wall in a room with high-bar seating.
At a 2022 Kansas gathering, Brad Doorn presents to farmers about NASA’s Earth Science Division and its activities supporting agriculture.
Credit: A. Whitcraft

GLAM set the stage for GEOGLAM, a separate, international initiative launched in 2011 by agriculture ministers from the G20—a group of the world’s major economies—partly as a response to global food price volatility. GEOGLAM, which stands for Group on Earth Observations Global Agricultural Monitoring, uses satellite data to monitor global crop conditions, from drought stress to excessive rain, around the world.

Joseph Glauber, a former USDA chief economist, noted that there was initial uncertainty within USDA about the initiative’s longevity, but he credited Brad’s background with rallying support. Today, GEOGLAM’s monthly crop assessments, produced by over 40 organizations including USDA and NASA, serve as a global consensus on crop conditions, helping governments and humanitarian organizations anticipate food shortages.

“Even today, the G20 points to GEOGLAM and its sister initiative, the Agricultural Market Information System—which tracks how crop conditions affect markets—as major successes,” Glauber said.

Harvesting Data Amid Conflict

Doorn’s work crosses continents. When war broke out between Russia and Ukraine in 2022, it rattled global food markets. The Ukrainian government turned to NASA Harvest—a global food security and agriculture consortium led by the University of Maryland and funded by NASA—for help. As manager of NASA’s agriculture program, Brad was a driving force behind the launch of NASA Harvest in 2017, envisioning it as a program that would harness satellite data to provide timely, actionable insights for global agriculture.

From orbit, satellites could observe the sown and the harvested wheat, sunflowers, and barley, offering some of the only reliable estimates for fields in the war zone. Satellite imagery revealed that, despite the conflict, more cropland had been planted and harvested in Ukraine than anyone had expected, a finding that helped stabilize volatile global food prices.

“Brad and the team recognized that providing that type of rapid agricultural assessment for policy support is what NASA Harvest exists for,” said Becker-Reshef, who is the director of the consortium.

NASA Harvest’s reach stretches well beyond Europe. In sub-Saharan Africa, the consortium collaborates with local and international partners, tracking the health of crops and the creeping spread of drought. This information helps equip governments, aid organizations, and farmers to act before disaster strikes, making each data point a crucial defense against hunger.

NASA Harvest has since been joined by NASA Acres, founded in 2023 to provide satellite data and tools that help farmers make well-informed decisions for healthier crops and soil in the United States. One project, for example, involves working with farmers in Illinois to manage nitrogen use more effectively, leveraging satellite data to enhance crop yields while reducing environmental impact.

Map of U.S. Midwest showing corn cultivation in yellow dots against gray background, with several Great Lakes visible.
This image shows corn cultivation patterns across the U.S. Midwest in 2020, with lands planted in corn marked in yellow. The map was built from the Cropland Data Layer product provided by the National Agricultural Statistics Service, which includes data from the USGS National Land Cover Database and from satellites such as Landsat 8.
Credit: NASA Earth Observatory/ Lauren Dauphin

Friedl noted that Doorn understands the missions of both NASA and the USDA, and with his agricultural roots, he knows the needs of farmers and agricultural businesses firsthand. “Often in meetings, Brad would remind us that the margins for a farmer are in the pennies,” Friedl said. “They wouldn’t be able to afford remote sensing,” so making sure NASA’s satellite information was free and accessible was that much more important.

“It’s hard to imagine that NASA would have the agriculture program it does without somebody like Brad continuing to advocate and push for this to exist,” said Alyssa Whitcraft, the director of NASA Acres. “He knows how critical it is for satellite data to be accessible and useful to those on the ground. He makes sure we never lose sight of that.”

An Emissary Between Worlds

Colleagues say Doorn’s strength lies in his ability to bridge worlds, whether it’s making connections between agencies like NASA and USDA, or connecting such agencies to state water councils or farming communities. His fluency in translating complex science into simple terms makes him equally at ease in whichever world he finds himself.

“There’s NASA language and there’s farm language,” says Lance Lillibridge, who farms about 1,400 acres of corn and soybeans in Benton County, Iowa, and has helped lead the Iowa Corn Growers Association. “Sometimes you need an interpreter, and Brad’s that guy.” He recalled a meeting where some farmers were skeptical, wary of NASA’s “big brother” eyes in the sky, “but Brad had a way of putting people at ease, keeping everyone focused on the shared goal of better data for better decisions.”

Brad Doorn speaks during NASA’s “Space for Ag” roadshow in Iowa, July 2023, highlighting NASA’s role in supporting sustainable farming practices.
Credit: N. Pepper

“One of my favorite memories of Brad,” said Forrest Melton, the OpenET project scientist at NASA’s Ames Research Center, “is an afternoon spent visiting with farmers in western Nebraska, drinking iced tea and talking with them about the challenges facing their family farm.”

Colleagues describe Brad as a nearly unflappable guide, one who knows the agricultural landscape so well that he makes the impossible seem manageable. They say his calm, approachable style, paired with a ready smile, puts people at ease whether in Washington conference rooms or Midwestern barns. And he listens closely to understand where there may be opportunities to help.

“Few people in the water and agriculture communities, from the small-scale farmer to the federal government appointee, aren’t familiar with some aspect of the work Brad has enabled over the decades,” said Sarah Brennan, a former deputy program manager for NASA’s water resources programs. “He has supported the development of some of the greatest advancements in using remote sensing in these communities.”

It’s About the People and the Team

Doorn’s leadership is less about issuing directives, colleagues say, and more about cultivating growth—in crops, in data systems, and in people. Like a farmer tending to his fields, he nurtures the potential in every project and person he encounters. “Almost everyone who has worked for Brad can point back to the opportunities he provided them that launched their successful careers,” said Brennan.

Over the years, he’s added layers to this work of creating paths for others to succeed: as president of the American Society of Photogrammetry and Remote Sensing, as an adjunct professor at Penn State, and as a youth basketball league director.

“What I’ve learned, probably in the military and I’ve carried it forward, is that it’s the people that matter,” Brad said. “I had great mentors who believed it’s just as important to help others grow as it is to meet the day’s demands. Those roles shift your focus toward the people around you, and often, the more you give of your time, the more you end up getting back.”

Five children—young Brad Doorn and four siblings—stand outside a house. Two girls wear matching floral dresses, and the three boys are in various formal attire.
Young Brad Doorn (front center) stands with his siblings, capturing a family moment in 1960s South Dakota. His youngest brother isn’t pictured.
Credit: B. Doorn

It has been a long journey from hauling milk and animal feed across the South Dakota plains to surveying them now as a scientist. The tools of his career have changed—from truck routes to satellite orbits, from paper maps to digital data—but his mission remains the same: helping farmers feed the world.

“Growing up in South Dakota, I saw firsthand the challenges farmers face. Today, I’m proud to help provide the tools and data that can make a real difference in their lives,” Doorn added. “Whether it’s a farmer, an economist, or a military analyst, if you give them the right tools, they’ll take them to places you never even thought about. That’s what excites me—seeing where they go.”

By Emily DeMarco

NASA’s Earth Science Division, Headquarters

Share

Details

Last Updated
Nov 20, 2024

Related Terms



from NASA https://ift.tt/kplLzW1

Wednesday, 20 November 2024

On This Day: Apollo 12 Lands on the Moon

On the Moon, an astronaut in a white spacesuit climbs down a ladder on a lunar module. The lunar module is made of metal with gold and silver foil covering some of its lower half.
NASA

NASA astronaut Alan Bean steps off the lunar module ladder in this photo from Nov. 19, 1969, joining astronaut Charles Conrad Jr. on the Moon in the area called the Ocean of Storms. The two would then complete two spacewalks on the lunar surface, deploying science instruments, collecting geology samples, and inspecting the Surveyor 3 spacecraft, which had landed in the same area. While Bean and Conrad worked on the Moon, astronaut Richard F. Gordon completed science from lunar orbit.

Learn more about Apollo 12’s pinpoint landing on the Moon.

Image credit: NASA



from NASA https://ift.tt/5pzsRYh

NASA Plans to Assign Missions for Two Future Artemis Cargo Landers

Two artists' concepts of human lunar landing systems on the Moon are shown: SpaceX on the left, which is white, tall, and thinner, with a pointed top, and Blue Origin on the right.
Early conceptual renderings of cargo variants of human lunar landing systems from NASA’s providers SpaceX, left, and Blue Origin, right. The large cargo landers will have the capability to land approximately 26,000 to 33,000 pounds (12-15 metric tons) of large, heavy payload on the lunar surface.
Credit: SpaceX/Blue Origin

NASA, along with its industry and international partners, is preparing for sustained exploration of the lunar surface with the Artemis campaign to advance science and discovery for the benefit of all. As part of that effort, NASA intends to award Blue Origin and SpaceX additional work under their existing contracts to develop landers that will deliver large pieces of equipment and infrastructure to the lunar surface.

NASA expects to assign demonstration missions to current human landing system providers, SpaceX and Blue Origin, to mature designs of their large cargo landers following successful design certification reviews. The assignment of these missions builds on the 2023 request by NASA for the two companies to develop cargo versions of their crewed human landing systems, now in development for Artemis III, Artemis IV, and Artemis V.

“NASA is planning for both crewed missions and future services missions to the Moon beyond Artemis V,” said Stephen D. Creech, assistant deputy associate administrator for technical, Moon to Mars Program Office. “The Artemis campaign is a collaborative effort with international and industry partners. Having two lunar lander providers with different approaches for crew and cargo landing capability provides mission flexibility while ensuring a regular cadence of Moon landings for continued discovery and scientific opportunity.”

NASA plans for at least two delivery missions with large cargo. The agency intends for SpaceX’s Starship cargo lander to deliver a pressurized rover, currently in development by JAXA (Japan Aerospace Exploration Agency), to the lunar surface no earlier than fiscal year 2032 in support of Artemis VII and later missions. The agency expects Blue Origin to deliver a lunar surface habitat no earlier than fiscal year 2033.

Based on current design and development progress for both crew and cargo landers and the Artemis mission schedules for the crew lander versions, NASA assigned a pressurized rover mission for SpaceX and a lunar habitat delivery for Blue Origin,” said Lisa Watson-Morgan, program manager, Human Landing System, at NASA’s Marshall Space Flight Center in Huntsville, Alabama. “These large cargo lander demonstration missions aim to optimize our NASA and industry technical expertise, resources, and funding as we prepare for the future of deep space exploration.”

SpaceX will continue cargo lander development and prepare for the Starship cargo mission under Option B of the NextSTEP Appendix H contract. Blue Origin will conduct its cargo lander work and demonstration mission under NextSTEP Appendix P. NASA expects to issue an initial request for proposals to both companies in early 2025.

With the Artemis campaign, NASA will explore more of the Moon than ever before, learn how to live and work away from home, and prepare for future exploration of Mars. NASA’s SLS (Space Launch System) rocket, exploration ground systems, and Orion spacecraft, along with commercial human landing systems, next-generation spacesuits, Gateway lunar space station, and future rovers are NASA’s foundation for deep space exploration.

For more on NASA’s Human Landing System Program, visit:

https://www.nasa.gov/hls

-end-

James Gannon
Headquarters, Washington
202-358-1600
james.h.gannon@nasa.gov

Corinne Beckinger
Marshall Space Flight Center, Huntsville, Ala.
256-544-0034
corinne.m.beckinger@nasa.gov

Share

Details

Last Updated
Nov 19, 2024
Editor
Jessica Taveau


from NASA https://ift.tt/XO1BznJ

Super Insulation Requires Super Materials 

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

A worker applies ceramic tiles to the space shuttle.
The thermal protection system on the outside of the space shuttle included hundreds of ceramic tiles custom made for the orbiter. These reflected heat off the shuttle’s outside surface during atmospheric re-entry and were an inspiration for the ceramic ingredients in Super Therm.
Credit: NASA

Without proper insulation, sunlight can make buildings feel like ovens. In the late 1980s, Joseph Pritchett aimed to solve this problem by developing a coating for building insulation. He knew of NASA’s experience with thermal testing, particularly with ceramics, which have several uses for the agency. Their heat-resistant properties make them excellent materials for spacecraft reentry shields, and their durability is perfect for airplane components. Pritchett thought by infusing paints with both insulating ceramic compounds and tough, resilient polymers, he could develop an insulation coating with the best features of both. 

Pritchett contacted the materials lab at NASA’s Marshall Space Flight Center in Huntsville, Alabama, through the center’s Technology Transfer Office. The facility had many ways to test heat-resistant materials, and the Marshall engineers and research scientists provided Pritchett with lists of material compounds to test for his insulation coating.  

Super Therm has been applied in several places, including handrails on the Hoover Dam Bypass Bridge over the Colorado River. The selection of its makeup of ceramic and polymeric materials was assisted by NASA scientists.
Credit: Superior Products InternationaI II, LLC

Over a period of six years, Pritchett tested every compound on the lists NASA provided, narrowing down the potential compounds until he found the ideal insulation. Pritchett founded Superior Products International II, Inc. of Shawnee, Kansas, in 1995. His product, dubbed Super Therm, is a composite of both ceramic and polymeric materials. In 2011, when tested by Oak Ridge National Laboratory in Tennessee, Pritchett’s product proved successful in saving energy when cooling homes.

The engineers at Marshall played a pivotal role in Super Therm’s development, as their knowledge was key to finding the right ceramic material. In addition to insulation for buildings, the material has been used in other industrial applications, such as keeping equipment like tanks and pumps cool on oil rigs. Pritchett’s Super Therm is yet another example of how NASA’s Technology Transfer Program within the agency’s Space Technology Mission Directorate drives innovation in commercial industry.  

Share

Details

Last Updated
Nov 19, 2024


from NASA https://ift.tt/C7VnQZB

Tuesday, 19 November 2024

NASA Selects New Leader of Space Technology

Clayton P. Turner, associate administrator for Space Technology Mission Directorate
Credit: NASA

Clayton P. Turner will serve as the associate administrator of the Space Technology Mission Directorate (STMD) at the agency’s headquarters in Washington, NASA Administrator Bill Nelson announced Monday. His appointment is effective immediately.

Turner has served as the acting associate administrator of STMD since July. In this role, Turner will continue to oversee executive leadership, strategic planning, and overall management of all technology maturation and demonstration programs executed from the directorate enabling critical space focused technologies that deliver today and help create tomorrow.

“Under Turner’s skilled and steady hand, the Space Technology Mission Directorate will continue to do what it does best: help NASA push the boundaries of what’s possible and drive American leadership in space,” said NASA Administrator Bill Nelson. “I look forward to what STMD will achieve under Turner’s direction.”

As NASA embarks on the next era of space exploration, STMD leverages partnerships to advance technologies and test new capabilities helping the agency develop a sustainable presence on the Moon and beyond. As associate administrator of STMD, Turner will plan, coordinate, and evaluate the mission directorate’s full range of programs and activities, including budget formulation and execution, as well as represent the programs to officials within and outside the agency.

Previously, Turner served as NASA Langley Research Center Director since September 2019 and has been with the agency for more than 30 years. He has held several roles at NASA Langley, including engineering director, associate center director, and deputy center director. Throughout his NASA career, he has worked on many projects for the agency, including: the Earth Science Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation Project; the materials technology development Gas Permeable Polymer Materials Project; the Space Shuttle Program’s Return to Flight work; the flight test of the Ares 1-X rocket; the flight test of the Orion Launch Abort System; and the entry, descent, and landing segment of the Mars Science Laboratory.

In recognition of his commitment to the agency and engineering, Turner has received many prestigious awards, such as the NASA Distinguished Service Medal, the NASA Outstanding Leadership Medal, the NASA Exceptional Engineering Achievement Medal. He is also an Associate Fellow of the American Institute of Aeronautics and Astronautics (AIAA) and a Board of Trustees member of his alma mater, Rochester Institute of Technology.

NASA Glenn Research Center Deputy Director, Dawn Schaible, became acting Langley Center Director in July and will continue to serve in this role. At NASA Langley, Schaible leads a skilled group of more than 3,000 civil servant and contractor scientists, researchers, engineers, and support staff, who work to advance aviation, expand understanding of Earth’s atmosphere, and develop technology for space exploration.

For more about Turner’s experience, visit his full biography online at:

https://go.nasa.gov/48UmkmS

-end-

Meira Bernstein / Jasmine Hopkins
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / jasmine.s.hopkins@nasa.gov

Share

Details

Last Updated
Nov 18, 2024


from NASA https://ift.tt/zSjEgyM

Hollywood Techniques Help NASA Visualize Supercomputing Data

2 min read

Preparations for Next Moonwalk Simulations Underway (and Underwater)

Designers at NASA’s Scientific Visualization Studio work alongside researchers and scientists to create high-quality, engaging animations and visualizations of data. This animation shows global carbon dioxide emissions forming and circling the planet.
Credit: NASA's Scientific Visualization Studio

Captivating images and videos can bring data to life. NASA’s Scientific Visualization Studio (SVS) produces visualizations, animations, and images to help scientists tell stories of their research and make science more approachable and engaging.

Using the Discover supercomputer at the Center for Climate Simulation at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, visualizers use datasets generated by supercomputer models to create highly detailed, accurate, and stunning visualizations with Hollywood filmmaking tools like 3D modeling and animation.

Using supercomputing models, SVS visualizers created this data-driven animation of carbon dioxide emissions moving around the planet. The visualization is driven by massive climate data sets and highly detailed emissions maps created by NASA researchers and external partners. The resulting visualization shows the impact of power plants, fires, and cities, and how their emissions are spread across the planet by weather patterns and airflow.

“Both policymakers and scientists try to account for where carbon comes from and how that impacts the planet,” said NASA Goddard climate scientist Lesley Ott, whose research was used to generate the final visualization. “You see here how everything is interconnected by the different weather patterns.”

By combining visual storytelling with supercomputing power, the SVS team continues their work to captivate and connect with audiences while educating them on NASA’s scientific research and efforts.

The NASA Center for Climate Simulation is part of the NASA High-End Computing Program, which also includes the NASA Advanced Supercomputing Facility at Ames Research Center in California’s Silicon Valley.

NASA is showcasing 29 of the agency’s computational achievements at SC24, the international supercomputing conference, Nov. 18-22, 2024, in Atlanta. For more technical information, visit: ​ 

https://www.nas.nasa.gov/sc24

For news media

Members of the news media interested in covering this topic should reach out to the NASA Ames newsroom

About the Author

Tara Friesen

Tara Friesen

Share

Details

Last Updated
Nov 18, 2024
Keep Exploring

Discover More Topics From NASA



from NASA https://ift.tt/EvaHWlh

Monday, 18 November 2024

NASA Program Aids Pediatric Patients Facing Medical Treatments

NASA astronaut Dr. Kjell Lindgren poses with a patient at the Fred Hutchinson Cancer Center roll-out event for NASA’s “MISSION: All Systems Go!” suite of digital products.
Credit: Fred Hutchinson Cancer Center

As NASA innovates for the benefit of humanity and inspires the world through discovery, the agency launched a new video series specifically designed for use by medical treatment centers across the United States to help reduce anxiety and stress among pediatric patients during treatment.

The project, named “MISSION: All Systems GO!”, is hosted by NASA astronaut Kjell Lindgren and was developed alongside the Fred Hutchinson Cancer Research Center and National Association of Proton Therapy. The suite of products intentionally draw similarities between an astronaut’s experience and the challenges young patients will encounter during their treatment, such as restricted movement in confined spaces, strange sounds and smells, and separation from family and friends. The videos, and accompanying products, are a new resource for treatment centers, and support President Biden and First Lady Jill Biden’s Cancer Moonshot Initiative.

“As part of the Biden Cancer Moonshot Initiative, NASA is committed to improving the experience of cancer patients and their families while we work to end cancer as we know it,” said NASA Administrator Bill Nelson. “Cancer treatment is full of unknowns, and so is space travel — we hope that this project will provide hope and comfort to patients and their loved ones as they navigate their cancer treatment mission.”

Some patients undergo as many as six weeks or more of treatments strapped into sterile, state-of-the-art medical machines that many patients find intimidating. However, some patients expressed fascination toward these high-tech mechanisms and compared them to the look of a NASA spacecraft, leading to the idea for this unique suite of products.

“Part of the agency’s mission is to improve life here on Earth,” said Kevin Coggins, deputy associate administrator and NASA’s SCaN (Space Communication and Navigation) program manager. “I’m proud that we can help thousands of kids and their families get through an extremely difficult time in their lives.”

In the first of three hosted videos, Lindgren, himself a medical doctor, briefs the patient on their upcoming “mission.” Step by step, Lindgren addresses each requirement and his confidence in how the patients can do it.

After completing their treatment, patients will receive a mission de-brief from Lindgren, where he offers reminders on how to follow up with treatment, as well as his heartfelt congratulations. The patient also is presented with a custom certificate of mission completion signed by Lindgren and Dr. James D. Polk, NASA’s chief health and medical officer.

Finally, in the third video, Lindgren takes part in a Q-and-A in which patient’s family and friends learn more about his job and how he’s handled challenges to what they now are facing.

In addition to the video products, medical centers will have access to NASA imagery to decorate a center’s video viewing room to look like NASA’s Mission Control Center, as well as display posters featuring human spaceflight and science missions enabled by NASA’s SCaN program.

NASA’s “MISSION: All Systems GO!” is another step in the agency’s effort to help President Biden and First Lady Jill Biden’s Cancer Moonshot Initiative. NASA is working with the U.S. Department of Health and Human Services, as well as researchers across the federal government to help cut the nation’s cancer death rate by at least 50% in the next 25 years.

“In 2022, NASA was added to the White House Cancer Moonshot Program. Since then, the agency’s Office of Chief Health and Medical Officer has formed several task forces with one specifically focused on patient and caregiver support,” said Mark Weyland, director of health operations and oversight for the Office of Chief Health and Medical Officer. “We believe the “MISSION: All Systems GO!” initiative will have a positive impact on so many patients and caregivers. Partnering with SCaN and the Cancer Moonshot Program furthers NASA’s desire to continue to provide for the health and wellness of humanity and the discovery of new medical innovations.”

The agency’s “MISSION: All Systems GO!” products are available for use by medical treatment centers and facilities across the United States. Centers interested in accessing the suite of products will be required to fill out an electronic form, accept NASA’s Terms of Use, and download the products from a dedicated Office of Chief Health and Medical Officer webpage: OCHMO & NASA Mission: All Systems GO! – NASA



from NASA https://ift.tt/iXQk61x

Saturday, 16 November 2024

NASA Receives 14th Consecutive ‘Clean’ Financial Audit Opinion

Credit: NASA

For the 14th consecutive year, NASA received an unmodified, or “clean,” opinion from an external auditor on its fiscal year 2024 financial statements.

The rating is the best possible audit opinion, certifying that NASA’s financial statements conform with Generally Accepted Accounting Principles for federal agencies and accurately present the agency’s financial position. The audit opinion reaffirms the agency’s commitment to transparency in the use of American taxpayers’ dollars.

“For the 14th year in a row, NASA has delivered a reliable, accurate, and transparent report of our fiscal operations as we explore the unknown in air and space,” said NASA Administrator Bill Nelson. “I thank NASA’s Chief Financial Officer Margaret Schaus for her leadership, and I am proud that NASA continues to uphold the public’s trust in our goals, our missions, and our financial reporting practices. Such trust is critical to our agency’s success.”

The 2024 Agency Financial Report provides key financial and performance information and demonstrates the agency’s commitment to transparency in the use of American taxpayers’ dollars. In addition, the 2024 report presents progress during the past year, and spotlights the array of NASA missions, objectives, and workforce advanced with these financial resources.

“I am proud NASA has achieved its 14th consecutive clean bill of health on its financial statements,” said NASA Chief Financial Officer Margaret Schaus. “I want to recognize the outstanding commitment of our NASA team to ensuring sound stewardship and transparency over the resources entrusted to our agency.”

In fiscal year 2024, NASA continued preparation for Artemis II, a mission to send four astronauts around the Moon as part of the Artemis campaign. The agency also publicly unveiled the X-59 quiet supersonic aircraft, which will change the way we travel, paving the way for a new generation of commercial aircraft that can travel faster than the speed of sound. Among other highlights, NASA built upon our longstanding efforts to study our Earth as a system, advancing our work on the NASA-Indian Space Research Organisation (ISRO) Synthetic Aperture Radar (NISAR) satellite. This joint mission between the agency and ISRO is the first radar of its kind in space to systematically map the Earth.

For more information on NASA’s budget, visit:

https://www.nasa.gov/budget

-end-

Meira Bernstein / Roxana Bardan
Headquarters, Washington
202-358-1600
meira.b.bernstein@nasa.gov / roxana.bardan@nasa.gov

Share

Details

Last Updated
Nov 15, 2024


from NASA https://ift.tt/jO6EpTX

NASA Goddard Lidar Team Receives Center Innovation Award for Advancements

NASA researchers Guan Yang, Jeff Chen, and their team received the 2024 Innovator of The Year Award at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, for their exemplary work on a lidar system enhanced with artificial intelligence and other technologies.

an engineer looks into an eyepiece connected to a large lidar instrument.
Engineer Jeffrey Chen tests a lidar prototype on the roof of Building 33 at NASA’s Goddard Space Flight Center in Greenbelt, Md. Chen and his team earned the center’s 2024 Innovator of the Year award for their work on CASALS, a lidar system enhanced with artificial intelligence and other technologies.
NASA

Like a laser-based version of sonar, lidar and its use in space exploration is not new. But the lidar system Yang and Chen’s team have developed — formally the Concurrent Artificially-intelligent Spectrometry and Adaptive Lidar System (CASALS) — can produce higher resolution data within a smaller space, significantly increasing efficiency compared to current models.

The true revolution in CASALS is a unique combination of related technologies, such as highly efficient laser and receiver designs, wavelength-based, non-mechanical beam steering, multispectral imaging, and the incorporation of artificial intelligence to allow the instrument to make its own decisions while in orbit, instead of waiting for direction from human controllers on the ground.

“Existing 3D-imaging lidars struggle to provide the 2-inch resolution needed by guidance, navigation and control technologies to ensure precise and safe landings essential for future robotic and human exploration missions,” team engineer Jeffrey Chen said in an earlier interview. “Such a system requires 3D hazard-detection lidar and a navigation doppler lidar, and no existing system can perform both functions.”

The CASALS lidar is being developed to study land and ice topography, coastline changes, and other Earth science topics. Future applications in solar system science beyond our planet are already in the works, including space navigation improvements and high-resolution lunar mapping for NASA’s Artemis campaign to return astronauts to the Moon.

An effective and compact lidar system like CASALS could also map rocky planets like Venus or Mars.

NASA leveraged contributions from external Small Business Innovation Research companies such as Axsun Technologies, Freedom Photonics, and Left Hand for laser and optical technology to help make CASALS a reality.

The Internal Research and Development (IRAD) Innovator of The Year award is presented by Goddard’s Office of the Chief Technologist to a person or team within the program with a notable contribution to cutting-edge technology. The CASALS team was presented their award at a technology poster session on Nov. 6, 2024, at NASA Goddard.

By Avery Truman
NASA’s Goddard Space Flight Center, Greenbelt, Md.

Share

Details

Last Updated
Nov 15, 2024
Editor
Rob Garner
Contact
Rob Garner
Location
Goddard Space Flight Center


from NASA https://ift.tt/OETe2PJ

NASA’s Brad Doorn Brings Farm Belt Wisdom to Space-Age Agriculture

Earth Home Explore Climate Change Science in Action Multimedia Data For Researchers 14 Min Read NASA’s Brad Door...